
Storytron: Introduction
Last edited by Bill Maya 1 day, 3 hours ago

Welcome to the exciting frontier of storyworld authoring! Here is where you will build the components
of a world that will interact with the storyplayer as s/he seeks to attain a goal and reach the story's
ending. There may be thousands of possible paths to that ending, and the satisfaction of reaching it will
depend on the richness you build into your storyworld.

Perhaps you already have ideas for what will happen in your storyworld. You may have some settings
planned. Some characters. A protagonist who will represent the storyplayer. Some important objects,
like a murder weapon or a magical sword. And a few key events.

These tutorials will help you translate these story elements into an interactive storyworld. The tool that
you will use to do this is SWAT (StoryWorld Authoring Tool).

Let's define some storyworld elements:

Element Examples

Stage Joe's Bar

Prop whiskey bottle, chair

Actor Tom, Mary, Fred

Verb punch, cry

Event Tom punch Fred

Notice that the elements in the left column are both capitalized and colored. Throughout this tutorial, a
capitalized word has a precise meaning in the context of Storytronics. For example, an actor is a person
who peforms in plays or movies, but an Actor is an element of Storytronics that has a specific meaning.
The colors applied to certain words and phrases will help you keep their qualities and functions straight
later on.

The last element in this list, Event, is a special kind of Sentence. Events drive what happens in a
storyworld. Notice that the example Event combines two Actors and a Verb.

"Event" and the rest of the elements listed in the left column are all classes of words in Sappho, the
simplified language through which you'll tell the computer how to operate your storyworld. (See Chris's
comments About Sappho.)

Sappho provides the grammer, you create the words. SWAT helps you put it all together.

Next Tutorial: The Editors

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Introduction http://storytron.pbwiki.com/Introduction?mode=print

1 of 1 3/8/09 11:08 AM

Storytron: The Editors
Last edited by Bill Maya 1 day, 3 hours ago

The Verb Editor

SWAT starts you off in the Verb Editor, a tool you'll be using a lot. You'll see a

screen with four columns.

The leftmost column (pink) shows a list of existing Verbs. The first category is

System Verbs. These are used by the system and are basic to every storyworld.

Only certain, limited kinds of changes are allowed for System verbs, so don't

touch them for now. You'll be adding your own Verbs shortly.

The next column to the right (blue) shows the currently selected Verb and some

components of the Verb that can be edited:

The Properties button brings up the Verb's basic settings, including the

assigned Emoticon (a graphic showing the Actor's facial expression), the

Audience (which other Actors witness the verb), WordSockets which

define which storyworld elements participate in or are affected by the

Verb, and a few other details.

The Consequences button is used to define the effects of theVerb on the

The Editors http://storytron.pbwiki.com/The-Editors?mode=print

1 of 7 3/8/09 11:09 AM

storyworld once it's used in a Sentence.

The rest of this column is the Role Editor, where the author defines how

various

Actors will respond to the Verb, i.e., what roles they will assume. A very

complex Verb can include a lot of potential Roles for various Actors.

Notice the green "+" and red "-" buttons in the Role Editor.

 This button always means "Add a new one of these things"

 This button always means "Delete this"

The third (white) column is the Script Editor. This is where details of the Verb are

defined using the scripting language Sappho.

The fourth column contains links to Operators. These are used in building scripts.

The links will become available once you start editing scripts.

Verbs are the most complicated elements used in building a storyworld. We're not

going to create any Verbs now; we'll come back to the Verb Editor in a bit.

The Stage Editor

On the menu bar, chose "Editors" and skip down to the Stage Editor to define a

Stage (a setting) for your storyworld. The editor window looks like this:

The Editors http://storytron.pbwiki.com/The-Editors?mode=print

2 of 7 3/8/09 11:09 AM

The big salmon-colored area is a map of your storyworld. There's one predefined

Stage there already: BareStage. At the right, beside "Stage to Edit," click the

green "+" to add a new Stage, and change this Stage's name to "Joe's Bar."

Note that Joe's Bar appears on the storyworld map. You can click the bullet by its

name and drag it to wherever you want on the map.

Click "Background Information." Here you can describe the Stage, and include an

image if you wish. Close the Background Information window and glance at the

"State Traits" box, and the "Core Stage Traits" and "Perceived Stage Traits" at the

bottom of the page. These are where you define what the Stage is like, and how

it's perceived by the Actors.

But we don't have any Actors yet! Let's move on.

The Actor Editor

Select the Actor Editor from the Editors pulldown in the menu bar. You'll see this:

The Editors http://storytron.pbwiki.com/The-Editors?mode=print

3 of 7 3/8/09 11:09 AM

The default Actor is the Protagonist, the hero of your storyworld, who is driven by

the player. You can change the Protagonist's name if you want; s/he will still be

the Protagonist of the storyworld.

Again, there's a "Background Information" button that you can use to describe the

current Actor and assign an image. Below the Background Information button are

the State and Mood sections. These are some basic Attributes that apply to any

Actor. They're pretty self-explanatory.

To the right of this column, the main part of the window is where "Core Actor

Traits" are defined. A couple of basic traits already exist, along with a box

marked "male." If that boxed is unchecked, the Actor is female. (More detail

about Actor traits may be found in the Storyworld Author's Guide under Actors.)

The predefined traits are also considered Attributes of the Actor:

 Quiet_Chatty (how loquacious the Actor is)

 Cool_Volatile (how much of a temper the Actor has)

Note that each trait name consists of two extremes, such as "quiet" and "chatty."

This bipolar naming structure helps you assign and quickly evaluate traits for

various actors. Use a similar name structure (such as Short_Tall, Kind_Cruel,

Timid_Brave, Ugly_Attractive) when you create new traits.

The Editors http://storytron.pbwiki.com/The-Editors?mode=print

4 of 7 3/8/09 11:09 AM

Let's create a couple of Actors, Tom and Fred.

Select "Protagonist" and enter "Tom" instead. Tom is now the Protagonist.

Uncheck the "female" box under "Core Actor Traits" to make him male. Change

his location to Joe's Bar.

Click the green "+" button under "Actor to Edit." Type "Fred" over "new actor."

Make him male, and put him in Joe's Bar too.

The Relationship Editor

From the menu bar, choose the Relationship Editor. This editor allows you to

define how well Actors know each other and what they think of each other.

Right now it shows "Tom" in both of the Actor boxes at the top left. Using the

pulldown arrows to the right of the windows, change the bottom box to "Fred."

Now you can adjust how Tom perceives Fred's traits, and the confidence he has in

his opinion. (Details about perception and confidence traits are in the Storyworld

Author's Guide, under Relationships.) Notice that the right half of the screen now

shows how Fred perceives Tom's traits.

There's also a "State" box on each side of the screen with three options:

The Editors http://storytron.pbwiki.com/The-Editors?mode=print

5 of 7 3/8/09 11:09 AM

Familiarity, Debt_Grace, and Stranger_Kin. These represent the Actors' opinions,

so they might not be the same in both directions. For example, Tom might feel

that he's familiar with Fred, but Fred might not think he's familiar with Tom. Fred

might feel he's in debt to Tom, while Tom might feel it's he who owes Fred a favor.

You can adjust any of the sliders to change the relationship between these two

Actors.

The Prop Editor

From the menu bar, open the Prop Editor. This looks a lot like the Actor Editor:

Change the name of the default Prop, "BareProp," to "whiskey bottle," and set its

location to Joe's Bar. Note that the owner is set as Tom, the Protagonist. Add a

second Prop, "chair," also in Joe's Bar. For this Prop, the default owner is Fate.

You can define additional core traits and perceived traits for the Props. We won't

bother with these at the moment.

The Copyrights Editor

The Editors http://storytron.pbwiki.com/The-Editors?mode=print

6 of 7 3/8/09 11:09 AM

This editor allows you to define the copyright status of your storyworld, as well as

to provide copyright information and attributions for any outside artwork and text

you decide to use. Don't worry about this Editor for now.

Now that you've seen all the editors and created some storyworld elements,

you're ready to start developing story action. Save your storyworld at this point.

We'll come back to it in a bit, but first, to help you understand how the Storyteller

Engine will execute your instructions, take a look at the Engine Cycle Overview.

Next Tutorial: Engine Cycle Overview

Previous Tutorial: Introduction

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

The Editors http://storytron.pbwiki.com/The-Editors?mode=print

7 of 7 3/8/09 11:09 AM

Storytron: Engine Cycle Overview
Last edited by Bill Maya 1 day, 3 hours ago

A story is a sequence of events. In Storytronics, an Event always includes a

Verb. When the story engine encounters an Event, it hands an imaginary

envelope (the Verb) to each of the Actors in turn:

The envelope contains a group of Roles for who

can respond and how they respond:

Each Role specifies:

the conditions under which an Actor

may assume that Role

the emotional reactions of an Actor

taking that Role

a group of Options for that Actor for

reacting to the Event

Each Actor considers that Role and, if that

Actor meets the conditions defined on the

Engine Cycle Overview http://storytron.pbwiki.com/Engine-Cycle-Overview?mode=print

1 of 2 3/8/09 11:09 AM

Role envelope, then that Actor executes the

Role, opening up its envelope to see the Options inside.

Each Option specifies:

which WordSockets will be used

construct the sentence for that Option

the rules for what words will be chosen to fill those WordSockets

the Inclination of the Actor towards executing that Option

In turn, each witnessing Actor considers the list of Roles and assumes one of

them if appropriate. An Actor assuming a Role becomes the “ReactingActor” for

the subsequent Role calculations.

Within that Role, a ReactingActor chooses the Option for which s/he has the

highest Inclination. That chosen Option becomes a Plan.

Plans are later executed by the Engine, becoming Events.

The cycle begins again.

Many complications, but this is the basic idea.

As you can see, one Event can be pretty complicated in terms of all the decisions

to be made by the story engine. Fortunately for the player, most of that is

invisible. For you, the author, your job is to define the possible Roles, reactions,

and Options for the Actors that will be triggered by the Verb. The Verb Editor is

the tool that will help you build all of this.

Next Tutorial: Verb Editing

Previous Tutorial: The Editors

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Engine Cycle Overview http://storytron.pbwiki.com/Engine-Cycle-Overview?mode=print

2 of 2 3/8/09 11:09 AM

Storytron: Verb Editing
Last edited by Bill Maya 1 day, 3 hours ago

Now let's use the Verb Editor to create some new verbs. When you open the

editor, here's what you see:

Right click (option-click on Mac) on "your first verb" and change its name to

"punch." Next, right-click on "your first category" and choose "New Verb." Call

this second Verb "run away from."

How do we define the details of these Verbs? Like a sentence in normal language,

they can contain various parts of speech. To organize these parts of speech in a

storywold, we use WordSockets.

WordSockets

Like every normal sentence, every Event includes at least two WordSockets:

Subject and Verb. You can add other WordSockets as you feel appropriate for

each Verb you create. Every Verb has its own set of WordSockets.

(See WordSockets for a detailed description of how they work.)

Let's set up our two Verbs, starting with

punch. Select that Verb by double-clicking on

it in the pink column on the left. The Verb's

label now appears at the top of the second

Verb Editing http://storytron.pbwiki.com/Verb-Editing?mode=print

1 of 5 3/8/09 11:10 AM

(blue) column.

Click on the "Properties" button at the top of

the second column. You'll see punch's

properties in a popup:

Right now the emoticube is "null." Choose a more appropriate emoticube from

the drop down menu, perhaps "angry" or "threatening" or "fighting."

Note that you've already got the two default WordSockets, Subject and Verb.

Since the puncher has to have someone to punch, we need a direct object, or

"DirObject" for short. This will always be an Actor. Notice that "3Actor" has been

filled in on the left below "Verb." We'll assign the Role of DirObject to 3Actor later

on.

If you click on the next drop down box, you'll be offered the choice of "4Actor,"

Verb Editing http://storytron.pbwiki.com/Verb-Editing?mode=print

2 of 5 3/8/09 11:10 AM

"4Prop," "4Stage," etc. (Don't choose anything now.) The number represents the

position of the item in the WordSockets list, which determines its position in the

sentence the player sees. The word represents its type. This naming method will

help you later on when you're scripting the subtle details of the Verb.

Now choose the other Verb, run away from, and edit its properties. You can

choose an emoticube if you like, perhaps "fearful." Note that "3Actor" is not

automatically added to this Verb's WordSockets. Go ahead and add it, since any

sentence using this Verb will take the form "Subjectrun away fromDirObject."

Why don't we just have DirObject as a part of the Verb, instead of creating a

WordSocket for an Actor? Because just like in normal language, not every Verb

has a direct object. The "Properties" box is designed to give you the maximum

possible flexibility in creating Verbs.

Roles

We looked at the Role Editor earlier, and now we're going to use it. A Verb can

have none, one, or many Roles, although a Verb with no Roles is rather like a

bicycle without wheels. Each Role specifies how an Actormight react to an Event.

Different Actors will react to the same Event differently; you create one Role for

each of the different Actor-situations.

Creating a Role

Let's create a Role for the Verb punch. Close the Properties box if it's still open.

Select punch by double-clicking on its listing in the pink column, then find the

word "Role" in the blue column. Just underneath that word is an empty white box;

to its right are a green "+" box and a red "-" box. Click on the green "+" box and

you'll see "new role" in the white box. Type "punchee" as the name of the Role

that you just created. It represents the Actor who gets punched.

Assuming a Role

Below the white box is a button labeled "AssumeRoleIf." This is used to define the

conditions under which an Actor would assume that Role. You don't want

everybody playing that Role—only the person who gets punched—so you have to

specify exactly what constitutes the conditions for assuming the Role.

In this case, it's very simple to define the appropriate condition: the Role should

be filled by the Actor who was punched, who is, after all, the DirObject of the

Event. So you want to specify that the Role should be filled by the Actor who is

the DirObject of this Event.

The way you specify this is, however, a little bass-ackwards. You don't actually tell

the Engine, "The Role should be filled by the DirObject." Instead, the Engine looks

at each and every Actor in turn and asks, "Should I pick this Actor to fill the

Role?" and your specification answers with a simple "yes" or "no." We'll teach you

Verb Editing http://storytron.pbwiki.com/Verb-Editing?mode=print

3 of 5 3/8/09 11:10 AM

exactly how that's done in a bit.

Emotional Reaction

Below "AssumeRoleIf" is "Emotional Reaction." We're going to skip this part of

the Role for now.

Options

Here's where we decide what the Actor playing the Role is going to do in response

to the Event.

Obviously, the punchee has a limited set of options when he's punched. He's not

going to "whistle Dixie" or "play ping-pong". His set of options should be confined

to what is dramatically reasonable. You, the author of the storyworld, must tell

the Engine what those dramatically reasonable options are. You do this inside the

box labeled "Options" in the blue column.

You'll notice that there's already an Option in that box: "OK." That's a default

Option that we automatically add to every new Role when you create the Role; it

basically means the actor's OK with what happened. It's not really appropriate for

"punchee"—getting punched is not OK—so go ahead and delete it. (To the right of

the white box showing "OK," click on the red "-" box.)

Now it's time to add an Option. An obvious choice is "punch"—after all, most men

are strong believers in reciprocity, so if one guy punches another, it's likely that

the punchee will respond by punching back. So let's add the Verb "punch" to the

Options list. To do that, find "punch" in the pink column on the left side of the

window, and click ONCE on it. Now simply click in the green box with the plus sign

next to the Options box.

Voila! The Verb "punch" has now been added as an Option of the Role "punchee."

Now add the other Verb ("run away from") to the Option list.

When you added a Verb, note that a DirObjectWordSocket box appeared

underneath the Option. This is for defining the DirObject of the Verb that's a

reaction to the original EventVerb. We'll leave this for later.

Beneath the DirObject box, there's a button labeled "Inclination." Again, we won't

fill it in yet, but it's important to understand what this does. The Inclination of any

Option is a number that tells the Engine how strongly inclined the the

ReactingActor is to choose this Option (e.g., how likely an Actor is to punch or run

away from another Actor). The Engine will evaluate the Inclinations of all the

different Options, and select the Option with the highest Inclination value.

Inclinations are defined by writing scripts. We'll get into the basics of scripting

next.

Verb Editing http://storytron.pbwiki.com/Verb-Editing?mode=print

4 of 5 3/8/09 11:10 AM

Next Tutorial: Scripting Basics

Previous Tutorial: Engine Cycle Overview

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Verb Editing http://storytron.pbwiki.com/Verb-Editing?mode=print

5 of 5 3/8/09 11:10 AM

Storytron: Scripting Basics
Last edited by Bill Maya 1 day, 3 hours ago

A Script is a tiny program that tells the Engine how to make things happen in your

storyworld. Every Script starts with an Operator. Some Operators take no

arguments, others take one or two arguments, and some even have three, four,

five, six, or more arguments.

Furthermore, Operators can take other Operators for arguments. So a Script is

really just a bunch of Operators nested inside each other, just like a set of nested

Russian Matroshka dolls.

Sappho is the Storytronics scripting language, and it includes about 1,000

Operators for you to choose from. It has many special features to make scripting

easier for the author. (See About Sappho.)

A typical Script might read something like this: "Store (this answer) into the value

for the Inclination." Of course, "this answer" could be a complicated group of

Operators, but the basic structure is always the same: one Operator does one

thing, but it can have several Operators inside it that it uses to do that one thing.

And of course those subsidiary Operators can have subsidiary operators of their

own, and on and on. For a detailed discussion of how fast an Operator can get

complicated, see Operators.

Right now we're just going to make a very simple script for each of our Verbs.

We'll start with an Inclination Script.

Select the Verb "punch" and it will appear with its single Role "punchee." The first

Option for "punchee" is "punch" (if your screen shows "run away from," use the

Options menu to choose "punch." This Option, like every other, has an Inclination

button. Click once on that Inclination button, and you'll see the default Inclination

Script appear in the third (white) column to the right of the blue column. It's not

much of a Script:

The title "Inclination" tells you that this is the Inclination Script. Ignore the little

"Script" button on the right edge for now.

The default Inclination Script has a value of 0.0. Click on that number. Some

new buttons appear above it, and some of the buttons along the right edge of the

window activate. Those buttons along the right edge are actually menus. Click on

one of those active menu buttons and a menu will pop up. Don't select anything

from the menu just yet; to dismiss the menu, just click anywhere else.

Above the word "Inclination" is an octagonal button labeled "BNumberConstant."

Scripting Basics http://storytron.pbwiki.com/Scripting-Basics?mode=print

1 of 3 3/8/09 11:11 AM

Select that item and a dialog box appears:

This handsome fellow is our Fearless Leader, Chris Crawford, who is widely

admired for his elegance and savoir faire. You can type in a number, so just type

in .5 and click on the "OK" button. Ta-da! The value you typed in appears now in

the Script. Your Inclination Script asserts that the Inclination to choose this Option

is 0.5.

That's a boring Inclination Script. It means that anybody and everybody will

always have an Inclination of 0.5 to take the "punch" Option. It doesn't care who

they are, how they feel, or anything else. Let's improve on it.

The red 0.5 should still be highlighted; if it isn't, click once on it to select it. From

the menus along the right edge of the window, click on the "Mood" menu and

you'll see five Operators. The middle one is "Fearful_Angry." That sounds pretty

good for a situation like this; if an Actor is angry, he'll be more likely to "punch."

Select the "Fearful_Angry" Operator and it replaces the 0.5 in the Script. But now

there's a new element as well:

Where'd that ReactingActor Operator come from? It's what's called a default

value. SWAT automatically inserts the most likely Operator in certain cases. In the

great majority of Scripts, we have found that authors almost always enter

ReactingActor in a spot like this. So we automatically put it there for you, saving

you a little time. Isn't that sweet?

Of course, you don't have to accept our default value; if you want to put

something else in there, you're welcome to do so. However, in this case, it's the

correct value, because ReactingActor always means "the Actor who has assumed

this Role." Hence, this Script means that the punchee'sInclination to punch back is

equal to how angry the punchee is.

Next we'll tackle a more complex Script, and one you'll probably be using a lot:

the AssumeRoleIf Script.

Scripting Basics http://storytron.pbwiki.com/Scripting-Basics?mode=print

2 of 3 3/8/09 11:11 AM

Next Tutorial: Scripting Exercise: AssumeRoleIf

Previous Tutorial: Verb Editing

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Scripting Basics http://storytron.pbwiki.com/Scripting-Basics?mode=print

3 of 3 3/8/09 11:11 AM

Storytron: Scripting Exercise: AssumeRoleIf
Last edited by Bill Maya 1 day, 3 hours ago

The AssumeRoleIf script gets used a lot. For every Event, the Engine uses

AssumeRoleIf to test all the Actors for the Roles to be filled in the Verb.

Click once on the AssumeRoleIf button, right underneath the "Role" box. Once

again you get an empty Script, but this time instead of a default number, you see

this:

The word "Condition?" is what we call a prompt: its purpose is to prompt you to

replace it with something, in this case, the condition that will determine whether

an Actor assumes the Role.

Note that this prompt is black. That's because the AssumeRoleIf Script is a

yes-or-no Script (boolean), which we express as "true-or-false."

Click on the Condition? prompt, and note that once again, some menus light up.

Click on some of the menus you clicked on previously. Surprise! They show

different menu items this time. That’s part of our "can't mix apples and oranges"

protection system for you. After all, it would be nonsense for you to enter 0.5 for

the Condition?, because 0.5 is not a boolean (true-or-false) value. It's just wrong

here, so SWAT won't let you use it or anything else that wouldn't fit.

Let's go back to the original idea for the Role "punchee." The punchee is the

DirObject of the Verb of this Event. But we don't tell the Engine "The punchee is

the DirObject of the Verb of this Event." Instead, we do it backwards. The Engine

goes through each of the Actors one at a time and asks the AssumeRoleIf Script,

"Does this Actor fit your requirements?" We need to write an AssumeRoleIf Script

that answers that question. The condition that we want is that the Actor (whom

we call the ReactingActor) is the DirObject of this Event. (i.e., the one who was

punched).

Make sure "Condition?" is still highlighted. (If you accidentally changed it, click

on that top item and hit "delete" to go back to the "Condition?" prompt.) Click

the large button below "delete" that says "AreSameActor." The condition changes

to AreSameActor, and the "Actor1?" prompt is now highlighted.

Select "ReactingActor" (the Actor who has assumed this Role). The Engine will

use the comparison Operator "AreSameActor" to test whether the current Actor

meets the requirements for the Role. We're checking to find which

"ReactingActor" is the DirObject of the Verb "punch," so For "Actor2?" choose

"ThisDirObject."

Our script is done:

Scripting Exercise: AssumeRoleIf http://storytron.pbwiki.com/Scripting-Exercise%3A-AssumeRol...

1 of 2 3/8/09 11:11 AM

This means "Assume the Role if the ReactingActor and ThisDirObject are the same

Actor."

Yes, it's a backwards way of saying it, but it still makes sense. If you're

wondering, ThisDirObject means "the DirObject of this Event, the one we're

reacting to."

This backwards way of thinking is one of the most difficult concepts in SWAT.

Instead of asking "Who should assume the Role?" we ask "What conditions specify

whether an Actor should assume the Role?" There's a reason for this

backwardness: the conditions might demand none, one, or many Actors to fill the

Role. If we phrase the question in the normal way, then the answer must be

phrased like this:

Who should fill the Role? Joe should fill the Role.

That implies exactly one Actor to fill the Role. But if we phrase the question in the

backwards way, we can give a more complex answer:

What conditions specify whether an Actor should fill this Role? These conditions.

Then we just try those conditions out on every Actor and see who ends up fitting

those conditions, which could be none, one, or many Actors.

Don't feel bad if this concept leaves you baffled at first; it really is

counterintuitive. It will take a while before you feel comfortable with it. But with

practice, it sinks in and pretty soon backwards thinking you comfortable with will

be. In the next lesson, we'll be using this kind of backwards thinking more

broadly.

Next Tutorial: Acceptable and Desirable

Previous Tutorial: Scripting Basics

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Scripting Exercise: AssumeRoleIf http://storytron.pbwiki.com/Scripting-Exercise%3A-AssumeRol...

2 of 2 3/8/09 11:11 AM

Storytron: Acceptable and Desirable
Last edited by Bill Maya 1 day, 3 hours ago

We're almost done with writing the Scripts for this Option; we have just two more

to tackle. These are grouped together under the heading "DirObject", and they're

labeled Acceptable and Desirable.

We never tell the Engine "this is the Actor I want" or "this is the Prop I want,"

because sometimes we want to include more than one Actor, Prop, or Stage. If

we used the format "This is the Actor I want," then we'd have problems specifying

more than one Actor. Therefore, we use a different approach, where the Engine

goes through all the Actors (or Props or Stages) and for each one asks "Should I

use this one?" The author tells it which Actors (or Props or Stages) are

acceptable, and how desirable each one is.

Back to the punchOption. Who should the puncheepunch? Why, the guy who

punched him! That Actor is the Subject of ThisEvent (the one we're reacting to).

So all we want is to declare that the Acceptable criterion for the DirObject of the

punch Option is that the Actor must be the Subject of ThisEvent:

This is just like the AssumeRoleIf Script, with two differences. First, we don't use

ReactingActor—that is reserved for the punchee in this case. Instead, we use

CandidateActor, which always means "the Actor that the Engine is considering for

this particular task." And instead of using ThisDirObject, we use ThisSubject. If

we used ThisDirObject here, then the punchee would react to being punched by

punching himself.

Obviously, there's only one Actor who will pass the Acceptable test, so the

Desirable test doesn't matter anymore. If you look at the Desirable Script, you'll

see that it's set to a value of 0.0, which is just fine. We'll explain how you use

Desirable in another lesson.

Now we need to deal with some tasks still undone. We already added the Verb

"run away from" to the Options of the Role "punchee." Now we need to fill some

details for this Option. In the WordSocket Acceptable and Desirable Scripts; that

should be easy. (Use the same Acceptable script we used for the Option "punch,"

and leave Desirable at default.) We also need to fill in the Inclination Script. This

task challenges your skill at translating what you know about human nature into

mathematical terms.

Computers can't understand human language or motives, so we have to translate

human behavior into a language the computer does understand: numbers. We tell

Acceptable and Desirable http://storytron.pbwiki.com/Acceptable-and-Desirable?mode=print

1 of 2 3/8/09 11:12 AM

the Engine that the likelihood that any Actor might take an action will be based on

how much (i.e., how big a number) the Actor has an inclination to do it, and this

in turn is based on his or her personality, mood, or other attributes. In other

words, we use a number scale for Actor personality traits and moods, etc. Later

on, we will go into more depth about how all this works, but for now, you dont

have much material to work with, so we're going to simply tell you what to put

into the Inclination Scripts:

Inclination for "run away from":

BInverse of:

 Fearful_Angry of:

 ReactingActor

Fearful_Angry can be found under "Mood" in the Operators menu.

Recall that we use a numerical scale for traits, moods, and characteristics. The

angrier the Actor is feeling, the higher a number his or her Fearful_Angry will be.

But if an Actor runs away, it is because he or she is afraid—not angry. So we need

to flip the Actor's Fearful_Angry mood "upside down." To do this, we use

BInverse. The BInverse Operator can be found under "Arithmetic" in the

Operators menu. It uses the inverse (opposite) of its argument. Since the higher

the value of Fearful_Angry (found under "Mood" in the Operators menu), the

more angry the ReactingActor is, the inverse will be how fearful the ReactingActor

is, so it fits the Verb "run away from" perfectly.

This completes our preliminary survey of scripting in SWAT. There's much more to

learn, of course. In the next lesson, we'll see how all this stuff translates into

action. It's time to actually do some interactive storytelling.

Next Tutorial: Running a Storyworld

Previous Tutorial: Scripting Exercise: AssumeRoleIf

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Acceptable and Desirable http://storytron.pbwiki.com/Acceptable-and-Desirable?mode=print

2 of 2 3/8/09 11:12 AM

Storytron: Running a Storyworld
Last edited by Bill Maya 1 day, 3 hours ago

We've waded through a lot of theoretical mud to get to this point, and at long last

we're ready to see this baby in action. There's one last bit of work we need to do:

hook up our Verbs to the start of the story.

In the Verb Editor, open the System Verbs menu and choose the very first Verb,

"once upon a time." Every single storyworld starts with this Verb, which launches

the story. We need to tell it what Event to begin with. Let's set it up so the first

thing that happens is that FredpunchesTom.

"Once upon a time" has one Role, "Fate." Delete this Role and add a new one

called "Fred." Click on AssumeRoleIf, and choose "AreSameActor." Our script will

be:

AssumeRoleIf

 AreSameActor

ReactingActor

 Fred

Click ReactingActor, then use the "ActorConstant" dialog box to select Fred.

Next, delete the default Option "OK" and add the Option "punch." (click once on

"punch" in the pink column, then click on the green "+" next to the Options box).

For the Acceptable Script, use this:

DirObject: Acceptable

 AreSameActor

CandidateActor

 Tom

Desirable and Inclination both default to 0.0. Leave them that way for now.

Click on the Properties box. Change the Audience to Anybody, and add a

3ActorWordSocket.

This insures that "once upon a time" will be followed by FredpunchingTom. Since

Tom is the first Actor in the list, the human player gets to play Tom (i.e., get

punched).

So now we are finally ready to play this storyworld! Look under the Lizards menu

and select the menu item "Storyteller Lizard." (What's a Lizard? Briefly, it's a tool

to assist the author in designing storyworlds. See Lizards for more detail.)

A new window will appear. If you've played a storyworld, it will look familiar:

Running a Storyworld http://storytron.pbwiki.com/Running-a-Storyworld?mode=print

1 of 3 3/8/09 11:12 AM

(For more on how to play a storyworld, see the How to Play page on the official

Storytron website.)

Click the period after "I OK" on the right half of the screen. Now you'll see:

This is the first Event in your new storyworld. Fred punched Tom. You, playing

Tom, now get to decide whether to punchFred back or run away fromFred. Go

ahead, punchFred. He'll punch you back. Punch him again. And again. And again.

Note how realistically this simulates the observed behavior of males of the species

Homo Sapiens in bars. When you get tired of this game, choose "run away from."

Running a Storyworld http://storytron.pbwiki.com/Running-a-Storyworld?mode=print

2 of 3 3/8/09 11:12 AM

Guess what? The story ends! Well, what did you expect? When somebody runs

away from a fight, there's no more fighting left to do!

OK, OK, War and Peace this wasn't. But it's a start. Close the Storyteller window,

and you're back at the Verb Editor. Next we want to make this storyworld a little

richer, a little deeper.

Next Tutorial: Enriching the Storyworld

Previous Tutorial: Acceptable and Desirable

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Running a Storyworld http://storytron.pbwiki.com/Running-a-Storyworld?mode=print

3 of 3 3/8/09 11:12 AM

Storytron: Enriching the Storyworld
Last edited by Bill Maya 1 day, 3 hours ago

Let’s add some Props to this storyworld. We already have two Props that we

created earlier: the whiskey bottle and the chair. Let's have Tom and Fred use

them as weapons.

Start by creating a new Verb, "hit with." For its WordSockets, include 3Actor and

4Prop(in case you're wondering, the numbers in front of the WordSocket terms, in

this case 3Actor and 4Prop, tell you in what positions they will show up in

Storyteller when someone is playing your storyworld). Now go back to the Verb

"punch" and add "hit with" as an Option to the Rolepunchee. We'll need to specify

the Acceptable and Desirable for the two WordSockets. For the

DirObjectWordSocket, we'll simply use the same Scripts that we used with the

Option "punch:"

DirObject

 Acceptable

 AreSameActor

 ThisSubject

 CandidateActor

 Desirable

 0.0

But now we need to write the Acceptable and Desirable Scripts for the

4PropWordSockets. On what basis should an Actor decide which Prop to use?

Let's assign one Prop to each of the two Actors: Tom always uses the whiskey

bottle and Fred always uses the chair. We do all of this within the Acceptable

Script. We'll need to organize this information in a way the Engine will

understand.

First, we want to restrict our considerations to Tom and Fred The beginning of our

script structure (not the actual Script) will look something like this:

Acceptable

 OR (either of the next two situations is acceptable)

 We're considering Tom and the whiskey bottle together

 We're considering Fred and the chair together

Let's flesh out the first part, the one for Tom. To logically put two requirements

together, we combine them with AND, like so:

 AND (both conditions are met)

 AreSameActor

Enriching the Storyworld http://storytron.pbwiki.com/Enriching-the-Storyworld?mode=print

1 of 4 3/8/09 11:12 AM

 ReactingActor

 Tom

 AreSameProp

 CandidateProp

 whiskey bottle

We'll do the same for Fred and the chair. Combining these Scripts with the initial

decision (which Actor is being considered), our finished Script looks like this:

Acceptable

 OR

 AND

 AreSameActor

 ReactingActor

 Tom

 AreSameProp

 CandidateProp

 whiskey bottle

 AND

 AreSameActor

 ReactingActor

 Fred

 AreSameProp

 CandidateProp

 chair

We don't need to worry about the Desirable Script, because the decision is made

by the Acceptable Script.

Going back up a level, we need to define the Inclination Script. How does the

ReactingActor choose between punch, run away, and hit with? We used Anger as

the Inclination for punch and the inverse of Anger as the Inclination for run away.

Now it’s time for a new idea: let’s say that ReactingActor never repeats himself. If,

the last time around, he punched, then this time around, he should hit with. And

if, last time around, he hit with, then this time he should punch.

This brings us to one of the really neat features of Storytronics: Actors have

memories. They remember what they did in the past and use that memory to

shape their future actions. To pull off this trick, you use the HistoryBook (see

HistoryBook Operators for full discussion of this feature).

We're going to use two new Operators: PickUpperIf and IHaventDoneThisSince.

The first is in the Arithmetic menu; the second is in the History menu.

Make sure "hit with" shows in the Option window, and click on Inclination. The

Enriching the Storyworld http://storytron.pbwiki.com/Enriching-the-Storyworld?mode=print

2 of 4 3/8/09 11:12 AM

prompt shows 0.0. Click on the Arithmetic menu and choose PickUpperIf. You'll

see this:

PickUpperIf:

 Switcher?

 ValueIfTrue?

 ValueIfFalse?

The idea behind PickUpperIf is that sometimes you want to choose between two

different numbers depending upon the circumstances. The three arguments can

be defined like this:

PickUpperIf:

 logical circumstances

 upper number

 lower number

If the logical circumstances are TRUE, then it will pick the upper number for the

value of Inclination. If the logical circumstances are FALSE, then it will pick the

lower number.

The logical circumstance, in this case, is whether the ReactingActor has done

"this" (this Option, hitting with) in a certain amount of time. Here's where we use

IHaventDoneThisSince.

The Switcher? prompt should be highlighted (if it isn't, click on it), then click on

the History menu. Choose IHaventDoneThisSince. You'll get a prompt,

HowLongBack? Choose NumberConstant and enter 2, for 2 moments. Here's

how our Script looks now:

PickUpperIf:

 IHaventDoneThisSince

 2

 ValueIfTrue?

 ValueIfFalse?

Now for the numbers. Let's make the upper number 0.99—much bigger than the

Inclination for either of the other two Options. And we'll make the lower number

-0.99—much lower than the Inclination for either of the other two Options. Use

the BNumberConstant button to fill in these values.

Inclination

 PickUpperIf:

 IHaventDoneThisSince

 2

Enriching the Storyworld http://storytron.pbwiki.com/Enriching-the-Storyworld?mode=print

3 of 4 3/8/09 11:12 AM

 0.99

 -0.99

So if the logical circumstances are TRUE, then ReactingActor will definitely choose

the hit with Option, but if the logical circumstances are FALSE, then the

ReactingActor will choose one of the other Options. If ReactingActor had indeed

used the Verbhit with on his last action, then that would have taken place 1

moment ago (each action takes one game "moment") and would have been

caught by IHaventDoneThisSince.

There’s one more step: we need to create a Role and Options for the Verb "hit

with." Here’s an easy way to do so:

We should still be editing the Verb "punch." Look under the main menu option

"Edit," and select "Copy Role." This copies the current (and only) Role "punchee"

into the clipboard. Next, double-click on the verb "hit with" so that you’re set up

to edit that Verb. Select "Paste Role" and voila! A copy of the Rolepunchee has

been inserted into the Role list for the Verb "hit with." It has the same Options

and Scripts that the original Role had, so it will work exactly like that Role works.

Change the name of the Role to "hittee," and we're done.

Let’s try out our handiwork. Fire up Storyteller Lizard and see what happens.

Notice that Fred always alternates between punch and hit with, while you (as

Tom) get to do them in any order you wish. That’s because Inclinations are not

used to make decisions for human players. Only the other Scripts affect human

players.

Next Tutorial: Attributes

Previous Tutorial: Running a Storyworld

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Enriching the Storyworld http://storytron.pbwiki.com/Enriching-the-Storyworld?mode=print

4 of 4 3/8/09 11:12 AM

Storytron: Attributes
Last edited by Bill Maya 1 day, 3 hours ago

An Attribute describes a trait, quality, or property of an Actor, Prop, or Stage. You

can create as many Attributes as you want, but we advise you to be careful and

not run hog-wild here, lest you create a confusing mess of Attributes. Our

experience has been that authors create too many Attributes at first, and then

have to pare down their list, which can be very tedious and time-consuming.

You can create Attributes to represent anything that you think is important to

your dramatic needs. For example, if you want to build a storyworld about

romance, you'll certainly want to have an Attributes for how attractive an Actor is.

If it's a macho storyworld for guys, you'll probably want an Attribute for how

strong each male Actor is. If it's a Western-type storyworld, then maybe you'll

want an Attribute for how quick on the draw an Actor is. You don't want Attributes

for everything and anything—you want Attributes that will directly influence the

decisions that Actors make.

Attributes are created in the appropriate Editor depending on whether you're

describing an Actor, Prop, or Stage. We have a convention that we have found is

very helpful when it comes to naming an Attribute: we give it two names

connected by an underscore, with the two names representing the meanings of

the two opposite senses of the Attribute.

For example, if we have an Attribute for how attractive an Actor is, we don't call it

"Attractive"—we call it "Ugly_Attractive." If we want an Attribute for how strong

an Actor is, we don't call it "Strong"—we call it "Weak_Strong." Years of

experience have taught us that this bipolar labeling convention makes it easier to

work with Attributes. In fact, we've built this convention into the Storyteller, so

that it's easier for the player to understand. The Storyteller takes advantage of

the labeling convention to make its presentation to the player a bit easier to

understand. But you don't have to follow this convention. If you want to give your

Attributes other labels, be our guest. (In fact, there are a few special situations in

which it's best not to follow the convention—but recognizing those special

situations is an advanced topic.)

Each Attribute has a different value for each Actor (or Prop or Stage). You set the

different values of the Attribute using the sliders for that Attribute.

But the weirdest, most confusing thing about Attributes is the number system we

use for them. Attributes are always measured with a strange kind of number that

we call a Bounded Number.

Bounded Numbers

Storytronics is a kind of simulation: it models dramatic behavior with numbers.

Designing such models is always a tricky business, and one of the trickiest,

Attributes http://storytron.pbwiki.com/Attributes?mode=print

1 of 6 3/8/09 11:13 AM

nastiest, dirtiest problems in modeling comes from dealing with the numbers

themselves. What, exactly, do we mean when we try to put a number on a

dramatic personality trait?

For example, suppose we want to take into account how gullible Actors are. We

want gullible Actors to have Inclinations that incline them towards trusting-type

Options, while we want other Actors to have Inclinations that incline them away

from trusting-type Options. Obviously, we'll want to create an Attribute called

"Suspicious_Gullible." But what would any such numbers mean? Does a

Suspicious_Gullible value of 100 mean that an Actor is really gullible? Does 5

mean that he's really suspicious? What does 3,157,287 mean? Or -37.2?

We all recognize that there are degrees of gullibility and suspiciousness. We can

readily understand that Actor X is more gullible than Actor Y, or that Actor Z is

just slightly suspicious. So we already know instinctively that gullibility and

suspiciousness are concepts that, at least theoretically, could be measured with

numbers. But what numbers are right for the job?

We have invented, just for Storytron, our very own kind of number that is

designed especially for this problem. We call it a Bounded Number, or BNumber.

We've designed it from the inside out to make perfect sense and to be easy to

use.

Whenever you use a BNumber, you think in terms of the average, not the

absolute. You don't think "How many units of gullibility should I assign to Fred?"

Instead, you think in terms of a bell curve of suspiciousness and gullibility, like

this:

Most people are close to the average in overall suspiciousness versus gullibility.

Some people are more suspicious and some are more gullible. And very few are

extremely suspicious or extremely gullible. So you use a value of 0.0 to indicate

average or normal values, a value of 1.0 to indicate the maximum possible degree

of gullibility, and -1.0 to indicate the maximum possible degree of suspiciousness.

(In practice, we never use the values of +1.0 or -1.0, because they're supposed

Attributes http://storytron.pbwiki.com/Attributes?mode=print

2 of 6 3/8/09 11:13 AM

to represent "the impossible extreme." So we normally just use +0.99 to mean

"really really really big one way" and -0.99 to mean "really really really big the

other way.")

This reliance on thinking in terms of bell curves makes a lot of problems go away,

because now you don't have to worry about the units of measurement. Suppose

you want an Attribute for how short or tall an Actor is. You don't have to worry

about whether an Actor is 5 foot 4 inches tall or 162 cm tall. You just decide that

average height is, say, 5 foot 6 inches, and really really really short is 4 feet 0

inches and really really really tall is 7 feet 6 inches. Then you can estimate that 5

feet 4 inches corresponds to a BNumber of about -0.05.

Nor do you have to worry about weird scaling problems, like multiplying

6,487,265 "Joy thingies" by 0.125 "Honest thingies." Sad_Joyful runs from -1.0 to

+1.0, and so does False_Honest. Everything is always measured on the same

scale—no matter what you're using!

In BNumber Arithmetic, everything always works out right. You can add, subtract,

and do whatever you want with BNumbers, and they never go outside of their

legal range from -1.0 to +1.0. No matter what you do to them, they always stay

legal. (More about Bounded Numbers in BNumbers, Unumbers, and Numbers)

Let's use an Attribute in our growing storyworld. Go to the Prop Editor and use

the green "+" box in the top center to add a new Attribute under "Core Prop

Traits." Call that Attribute "Harmless_Lethal." This will represent how injurious a

Prop is when used in a fight. Now add three more Props: pillow, cane, and club.

Be sure to set their locations to "Joe's Bar." Use the sliders to assign

Harmless_Lethal values to the Props as follows:

 pillow - leftmost tick (low)

 cane - next tick to right (medium-low)

 whiskey bottle - center tick (average)

 chair - next tick to right (medium-high)

 club - rightmost tick (high)

Let's use this new Attribute to make the decision-making for the Option "hit with"

more interesting. Let's say that, when you hit somebody with something, you

choose the least lethal weapon that's still more lethal than the one you were hit

with. In other words, if somebody hits you with something, you up the ante, but

you don't immediately jump all the way to the most lethal weapon. So let's

change the Acceptable and Desirable scripts for the 4PropWordSocket for the

Option "hit with" for the Role "hittee" for the Verb "hit with."

But first, a little digression: did you notice how clumsy the previous sentence is?

We had to use a long string of prepositional phrases to specify exactly what script

we're talking about. After having written too many of these long, tedious

sentences, we came up with a shorthand that's much easier to use and

Attributes http://storytron.pbwiki.com/Attributes?mode=print

3 of 6 3/8/09 11:13 AM

understand. The form is as follows:

Verb: Role: Option: WordSocket: {Acceptable or Desirable}

So in this case, that entire sentence could have been reduced to:

hit with: hittee: hit with: 4Prop: Acceptable

Back to work. We need to write an Acceptable Script and a Desirable Script. Go to

the Verb Editor and make sure the Verb selected is hit with. The Role should be

hittee and the Option should be hit with, just as in the shorthand sentence

above.

Do you recall that the Inclination Script never affects the player? The computer

uses the Inclination Script to make decisions for the other Actors, but the human

player always gets the full choice of Options. Well, the same principle applies to

Acceptable and Desirable. We want the human player to be able to choose from

any of the possible Props, but we want the computer-controlled Actors to choose

based on the escalatory algorithm we described above.

The 4Prop Acceptable Script determines what choices the human player sees on

the menu, while the Desirable Script decides which of those menu items the

computer Actor will choose. This, it turns out, makes some of our Scripting work

easier—and some harder.

The Acceptable Script is ridiculously easy. We want the human player to be able to

choose whatever Prop he wants. Hence, the Acceptable Script looks like this:

Acceptable

 true

This means that, whenever the Engine asks, "Is this Prop acceptable?" the answer

is always "Yes." Every Prop will be Acceptable! So the human player can choose

any Prop he wants.

Click on Acceptable under 4Prop and erase the old Acceptable Script by clicking on

the highest Operator ("OR") and hitting the delete key. Then press on the "true"

button just above the Scripting box. Done.

For the computer Actors, we need to use the Desirable Script to implement the

escalatory idea sketched above. We want the Desirability to be negative when the

Prop in question has lethality lower than the lethality of the Prop that was just

used on the Actor, and maximum for the Prop that has the lowest lethality of the

remaining Props. Here's a Script that does this:

Desirable

Attributes http://storytron.pbwiki.com/Attributes?mode=print

4 of 6 3/8/09 11:13 AM

 PickUpperIfof:

 TopGreaterThanBottom(BNumber) of:

 Harmless_Lethal of:

 CandidateProp

 Harmless_Lethal of:

 This4Prop

 BInverse of:

 Harmless_Lethal of:

 CandidateProp

 -0.99

The TopGreaterThanBottom(BNumber) Operator is in the "Logical" menu; and the

Harmless_Lethal Operator is in the "Prop" menu. This4Prop is in the "ThisEvent"

menu.

Let's take this Script apart and explain it piece by piece. The PickUpperIf Operator

will pick the upper term (the BInverse term) if the condition is true; if the

condition is false, then it will return the lower value: -0.99. Obviously, a Desirable

of -0.99 is very undesirable and the CandidateProp with that value won't be

selected.

Let's suppose that the logical condition turns out to be true. Then the upper term

(the BInverse one) will be chosen. What does that mean? BInverse is a really

simple Operator: it simply reverses the sign of its argument. Thus, BInverse of

-0.5 is +0.5; BInverse of +0.25 is -0.25, and so forth. So the CandidateProp with

the highest value of Harmless_Lethal will have the lowest BInverse result, and the

CandidateProp with the lowest value of Harmless_Lethal will end up with the

highest BInverse result.

But now we have to consider the biggest term in this Script, the logical term

TopGreaterThanBottom(BNumber). This yields true if the top number of its two

arguments is bigger than the bottom number, and false otherwise. In other words,

it asks, Is the Harmless_Lethal of the CandidateProp bigger than the

Harmless_Lethal of This4Prop, the Prop that I was hit with? If so, then we pick the

BInverse term. If not, we pick the -0.99 term.

Let's suppose that Joe has just hitFred with the cane, and Fred is running the

Desirable Script for the Prop he's going to "hit with" back. The CandidateProp

with the highest Desirable value is the whiskey bottle, which is exactly what we

wanted.

Let's try it in Storyteller Lizard to watch the algorithm at work. There's one more

thing we need to adjust first: we changed the 4Prop Acceptable script to "true" in

the hit with Option under hit with, but the old script (the one that forces Fred to

use the chair and Tom to use the whiskey bottle) is still in the hit with Option

under punch. If we don't change it, the first time the player (Tom) has the choice

Attributes http://storytron.pbwiki.com/Attributes?mode=print

5 of 6 3/8/09 11:13 AM

of using hit with, the only Prop he can use is the whiskey bottle.

Welcome to the nit-picky world of scripting.

If you want to see this problem happening, try it out in Storyteller Lizard. To fix

it, use the Verb Editor to edit punch, and in the hit with Option, change the 4Prop

Acceptable script to "true." Now the first time Tom has the choice of using hit

with, he has all the Props to choose from.

Try hittingFred with various Props, and watch how he responds. The escalation

algorithm guides his choices of what Prop to hit with. Have fun!

Next Tutorial: Emotional Reactions

Previous Tutorial: Enriching the Storyworld

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Attributes http://storytron.pbwiki.com/Attributes?mode=print

6 of 6 3/8/09 11:13 AM

Storytron: Emotional Reactions
Last edited by Bill Maya 1 day, 3 hours ago

Let's look at the Emotional Reaction menu that we skipped over previously. You'll

find it in the second (blue) column of the Verb Editor, just below the AssumeRoleIf

Script button. When you click on it, you get this menu:

There are three groups of items here: "Adjust____"

items, "FillRoleBox" items, and "AdjustP___" items. Let's

tackle them in sequence.

The "Adjust____" items refer to Debt_Grace, Familiarity,

Disgusted_Aroused, Sad_Happy, Fearful_Angry, and

Tired_Energetic. Except for the first two, these are

Moods. A Mood in Storytron is a value that will

automatically die down over about 10 moments. So if

you bump up a Mood, it will remain significant for about

10 moments, after which time it reverts to a value of

0.0. Let's focus on the last one, AdjustTired_Energetic.

This concerns the degree to which a person is feeling

exhausted or pumped up. Obviously, if a person is tired,

they won't hit as hard. Also, the longer a person fights,

the more tired they become. Let's implement this idea.

But first, what is meant by "Adjust?" Often we simply

want to set a variable to a new value. For those

situations, we have Operators that start with the word

"Set." However, there are also plenty of situations in

which we want to start with the existing value—

whatever it may be—and nudge it one way or the other.

For these situations, we use Operators that begin with

"Adjust." When we use Tired_Energetic, we want to use

the Adjust Operator, not the Set Operator, because an

Actor who does some labor becomes more tired with

each exertion.

So we have two changes to make in our storyworld.

First, we must adjust Tired_Energetic downward each

time an Actor uses the Verb "hit with." Second, we must

insure that the Actor hits only as hard as his

Tired_Energetic permits.

The first task is easy: all you do is go to Verb "hit with," Role "hittee" and select

the menu item "AdjustTired_Energetic" from the EmotionalReaction menu. This

adds a Script button "AdjustTired_Energetic in the space just underneath the

EmotionalReaction menu. Click on that Script button and you'll see the Script for

AdjustTired_Energetic. It's empty—it just shows the prompt "How much?" Just fill

Emotional Reactions http://storytron.pbwiki.com/Emotional-Reactions?mode=print

1 of 3 3/8/09 11:13 AM

in the BNumberConstant -0.5 there. This will adjust Tired_Energetic of the

ReactingActor downward (more tired) every time the Role is assumed.

Here's an extra-credit question. Did you notice what we just did? We just adjusted

ReactingActor's Tired_Energetic! But who is the person who just did the work of

hitting? It was ThisSubject! To put it another way, let's say Fred has just hitTom

with a whiskey bottle. Fred, then, is ThisSubject—the person who did the hitting.

He's the one doing the work, and he's the one who should be getting tired. But

it's Tom who is getting more tired—not Fred!

However, it's probably reasonable to assume that the person getting hit is going

to get worn out as well. Besides which, since both gents are in a brawl, they will

both gradually get more worn out, so this approximation of reality works.

It's perfectly OK to take shortcuts like this, as long as you understand what you

have done and the limitations of your assumptions.

Now we have to make Tired_Energetic affect the Actor's behavior. To do this, we'll

need to make a change in the Verb "hit with."

Go to that Verb and open the Properties box. Add a WordSocket "5Quantifier."

This changes the meaning of "hit with" to include the notion that an Actor can hit

with varying degrees of force.

This simple change has had consequences elsewhere in your storyworld, because

now you must supply the Acceptable and Desirable Scripts for the two places in

which the Verb "hit with" shows up as an Option. How do you find those two

places? Easy. Just look under the Lizards menu and select the menu item

"ComeFrom Lizard." The little window that pops up shows you all the Roles in

which the Verb you're editing (which should be "hit with") is an Option. All you do

is double-click on one of those listings and poof! you're there, looking at the

Option. Do so.

Now we're looking at a Role with an Option of "hit with." There is now an entry for

the "5Quantifier" WordSocket, containing both an Acceptable Script and a

Desirable Script. If you look at these two Scripts, you'll realize that they haven't

been written yet—they just contain Operators with question marks in them. You

have to write those two Scripts.

The first, Acceptable, is pretty easy to write. Any Quantifier is acceptable in this

situation—except for the one we call the "Interrogative Quantifier," which is the

term "how much?" So your Acceptable Script has only the task of locking out the

Interrogative Quantifier. That's done like so:

NOT

 QuantifierIsInterrogative

CandidateQuantifier

The Operator "QuantifierIsInterrogative" is in the Words menu on the right side.

Emotional Reactions http://storytron.pbwiki.com/Emotional-Reactions?mode=print

2 of 3 3/8/09 11:13 AM

The Desirable Script is more difficult to write. Its job is to select the Quantifier

that matches the level of Tired_Energetic of the Actor. If the Actor has a high

value of Tired_Energetic, then you want to maximum Desirability for a large

Quantifier. If the Actor has a low value of Tired_Energetic, then you want

maximum Desirability for a low Quantifier. Fortunately, this is all handled quite

nicely for you with a handy-dandy Operator called "Suitability." The Desirable

Script looks like this:

Suitability of:

 CandidateQuantifier

 Tired_Energetic of:

 ReactingActor

That's all there is to it. The Suitability Operator, which can be found in the Word

menu, figures out how the value of its second argument (the BNumber argument)

fits into the scale of Quantifiers, and then compares that fit with the

CandidateQuantifier. If the match is close, it gives a high value; if the match is not

close, it gives a low value. This insures that Tired_Energetic will determine the

chosen value of the Quantifier used in 5Quantifier.

Go ahead and add these two Scripts. Then go back to the Verb "hit with" and

check ComeFrom Lizard to make sure that you have fixed both instances of "hit

with" as an Option. (You can use "Copy" to add copies of the scripts to the other

Option.) When you have taken care of both instances, try out the storyworld.

Does it work as you expected?

Next Tutorial: Consequences

Previous Tutorial: Attributes

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Emotional Reactions http://storytron.pbwiki.com/Emotional-Reactions?mode=print

3 of 3 3/8/09 11:13 AM

Storytron: Consequences
Last edited by Bill Maya 1 day, 3 hours ago

Now let us turn to the "Consequences" section near the top of the middle blue

column. A Consequence is just like an EmotionalReaction, with one big difference:

EmotionalReactions are subjective, while Consequences are objective.

Suppose, for example, that Fred hits Tom so hard that Tom is injured. Tom can

have an EmotionalReaction to being hit: he might become more angry. That's a

purely subjective response; different Actors might respond differently to being hit.

It also depends on your point of view. If you're the one being hit, you're probably

going to get angry. But if you're a bystander, you might not care at all. Hence, the

EmotionalReaction is a purely subjective effect, and is always tied to a specific

Role. But the injury is not a subjective matter; that always happens irrespective

of the personality of the hittee. That's what we have Consequences for.

You apply Consequences in exactly the same fashion that you apply

EmotionalReactions. Click on the Consequences button to raise the Consequences

menu, which is itself a list of submenus listing different variables. When you

select one of those secondary menu items, SWAT creates a new Script button just

underneath the Consequences button. If you click on that Script button, you'll put

that Script into the Script editing area on the right, where you can edit it.

Let's try it out. First, go to the Prop Editor and modify the ownership of the Props

as follows:

Tom gets whiskey bottle, chair, and pillow

Fred gets cane and club

Next, go the Script Other: hit with: hittee: hit with: 4Prop: Acceptable

(remember, this is our shorthand for Category Other, Verb hit with, Role hittee,

Option hit with, WordSocket4Prop, Acceptable Script). The Acceptable condition is

currently set to "true," meaning that every Prop is acceptable. Let's change this to

AreSameActor

 ReactingActor

 Owner of:

 CandidateProp

You can find "Owner" in the Prop menu.

This means that the only Props that are Acceptable are those that the

ReactingActor owns. Sounds reasonable, doesn't it?

We've set up the situation, now let's make a Consequence. Let's say that, when

one Actor hits another with a Prop, then the other Actor gets ownership of the

Consequences http://storytron.pbwiki.com/Consequences?mode=print

1 of 2 3/8/09 11:13 AM

Prop. So, while still in the Verb "hit with," go to the Consequences menu,

submenu "SetProp," and select "SetOwner." That creates a new Script button for

SetOwner. Click on that button to edit the Script. You see the following:

 Prop?

 Owner?

The Prop is This4Prop, the Prop that was used to hit with. This can be found under

"This Event" in the menu at right.

The Owner is ThisDirObject, the Actor who was hit. Again, it's found under "This

Event."

After you fill out this script, run Storyteller and see if it works as you would

expect.

Next Tutorial: Hijacking

Previous Tutorial: Emotional Reactions

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Consequences http://storytron.pbwiki.com/Consequences?mode=print

2 of 2 3/8/09 11:13 AM

Storytron: Hijacking
Last edited by Bill Maya 1 day, 3 hours ago

There are sometimes situations in which you might want to have several Actors

reacting to an Event. Sometimes you'll want them all to act, but sometimes you'll

want the action of one Actor to block the actions of others. For example, if

somebody shouts, "There's fire in the kitchen!" and John reacts to the Event by

dousing the fire, you don't want somebody else to douse the fire as well; one

dousing will do.

To demonstrate this, we need a third Actor. Go to the Actor Editor and create a

new Actor, Mary. Set her location to Joe's Bar, then return to the Verb Editor. Let's

say that Mary is your (Tom's) girlfriend, and she doesn't like to see people beat

you up. So, if somebody (say, Fred) uses "hit with" on Tom, then Mary should

intervene by pleading with Fred to desist.

So first we must create the Verb "plead to desist." Click on the "your first

category," then click the Verbs tab and choose "New Verb." (You can also right-

click, or control-click on Mac, anywhere in the pink column.)

In the Properties box, add a 3ActorWordSocket for the DirObject. Now go back to

"hit with" and create a new Role; let's call it "girlfriend." Now, we could get clever

here and create an ActorAttribute that specifies just who is hitched up with whom,

but in this case, there's a shortcut: Mary is the only female here, so let's take

advantage of that. However, there's another problem: we don't want Mary to

plead with Fred if JoehitsTom; we want her to plead with Fred if Fred hitsTom. For

the AssumeRoleIf Script, just use:

AND

 NOT

 Male

 ReactingActor

 AreSameActor

 ThisSubject

 Fred

Hijacking http://storytron.pbwiki.com/Hijacking?mode=print

1 of 2 3/8/09 11:14 AM

"Male" is found in the Actor menu.

Now let's give Mary the Option to plead with Fred. Click once on the Verb "plead

to desist" in the left column and then click the green "+" plus button next to the

Options box. That adds "plead to desist" to the Option list for the Role "girlfriend."

Next fill in the two Scripts for the DirObjectWordSocket. They're quite simple; you

want Mary to plead with the Subject of "hit with"—whomever did the hitting:

Acceptable

 AND

 AreSameActor

 ThisSubject

 CandidateActor

 AreSameActor

 ThisDirObject

 Tom

Note the second comparison, establishing that Tom is the one who was hit. If we

left this out, Mary would plead with Fred if he hit anyone, not necessarily Tom.

Right now we only have Tom, Fred, and Mary in the storyworld, but we might add

other actors later, and this script will make sure that Mary only pleads on behalf of

Tom.

The Desirable script can remain at 0.0.

We also need to assign an Inclination value. Use 0.0 for this as well.

Finally, we don't want Mary ever responding with a simple "OK," so delete that

Option.

There's just one last step to take here: we need to engage the hijacking feature.

To do that, click once on the "Properties" button, and check the checkbox marked

"Hijackable."

You're all set. Run Storyteller and see what happens.

Next Tutorial: Properties Box

Previous Tutorial: Consequences

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Hijacking http://storytron.pbwiki.com/Hijacking?mode=print

2 of 2 3/8/09 11:14 AM

Storytron: Properties Box
Last edited by Bill Maya 11 hours, 48 minutes ago

We've used the Properties Box before, but never taken a full tour of its features.

They are:

Expression: Used to choose the Emoticube that will represent the Verb in the

Storyteller display.

Audience: Used to decide who witnesses the Event. This is covered in detail in

Audience Requirements.

Description: The Author uses this to describe what the Verb does. This text will

show up as a tooltip in Storyteller, telling the Player exactly what the Verb means

and what will happen if they choose that Verb.

hijackable: Whether or not the Verb can be hijacked (see Hijacking).

Properties Box http://storytron.pbwiki.com/Properties-Box?mode=print

1 of 2 3/13/09 8:29 AM

occupies DirObject: Usually the DirObject is part of the Event and so is occupied

by it (unable to do anything else until it ends). However, there are a few rare

cases in which you might not want the DirObject to be occupied by the Event.

These are usually cases in which the Audience is set to “Mental State” or “Subject

Only”.

use Abort Script: Whether or not you want the Verb to have an Abort Script

(see Abort Script).

TimeToPrepare: The amount of time that must elapse after setting the Plan

before it can be executed. Usually TimeToPrepare is 1.

TimeToExecute: How long the Subject is tied down in the execution of the Verb.

Usually TimeToExecute is 1.

Trivial_Momentous: Useful for measuring the dramatic import of a Verb. Will be

more important in future versions of Storytron.

WordSockets: Here's where the Author creates the WordSockets used by the

Verb. Every Verb has two default WordSockets: Subject and Verb. Up to thirteen

additional WordSockets can be created for Actors, Props, Stages, certain Traits,

and Quantifiers that will participate in the Verb (detailed examples in

WordSockets).

Visible?: Whether the WordSocket is visible to the Player. Usually WordSockets

are visible, but in certain cases, you may want to hide them from the Player.

Suffix: Here's where the Author defines additional words to be displayed in the

Deikto Sentence depicting the Verb to the Player, making the Sentence easier to

understand. Example in WordSockets.

Note to Myself: For the Author's use in keeping track of which WordSocket holds

which component. Contents of this field appear as a tooltip in the Options display

of the Verb Editor.

Next Tutorial: Abort Script

Previous Tutorial: Hijacking

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Properties Box http://storytron.pbwiki.com/Properties-Box?mode=print

2 of 2 3/13/09 8:29 AM

Storytron: Abort Script
Last edited by Bill Maya 6 days ago

Very rarely, you'll encounter a situation in which you need an Actor to abort an

already-established Plan. For example, suppose that Mary decides to poison Tom

and the first step of her scheme is to cook the poison, which takes several hours.

While the poison is cooking, Tom comes by to visit and sincerely apologizes for his

past transgressions against Mary. They kiss and make up. However, the poison is

still cooking and when the cooking is complete, Mary has a Plan in place to put

the poison into Tom's coffee. How do you prevent this from happening?

The old way was to insert some sort of test in the Inclination Script that asked

"Gee, has Tom apologized for his transgressions?" This turned out to be clumsy,

and the Scripts necessary to make it work were long and complicated. So we

designed a better system: the Abort Script. This Script is so rarely needed that we

don't make it an automatic part of the normal scripting process. Instead, it is

optional. To turn on the Abort Script, you have to open the Properties box for the

Verb and check the "Abort" checkbox therein. This places a new Script button

(Abort) above the Consequences menu button. This Script takes a boolean value;

if it evaluates to true, then execution of the Plan containing that Verb will be

aborted. The Engine checks the Abort Script whenever it is about to execute a

Plan containing that Verb.This way, Mary could abort poisoning Tom and two

minutes later, Jennifer could proceed with poisoning Bob.

Next Tutorial: Relationship Editor

Previous Tutorial: Properties Box

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Abort Script http://storytron.pbwiki.com/Abort-Script?mode=print

1 of 1 3/13/09 8:30 AM

Storytron: Relationship Editor
Last edited by Bill Maya 6 days ago

The Relationship Editor handles the tedious task of defining all the relationships

among all the Actors. There are quite of few of these, and it can take a lot of work

to fill in all the data, so the Relationship Editor also provides a few tools for easing

your workload.

But first, we have to explain a few concepts. The core concept is the

ActorAttribute. You learned about Attributes in Lesson 10. What we didn't tell you

is that Attributes can be perceived by other Actors—and that these perceived

values are not necessarily the same as the actual values.

Let's illustrate this with an example: imagine an Attribute called False_Honest,

representing the integrity of an Actor. Rick's False_Honest value, as specified in

the Actor Editor, is how False_HonestRick truly is. The pFalse_Honest value (the

"perceived" False_Honest value) of Jane for Rick is how False_Honest Jane thinks

Rick is (i.e., how much she trusts him). The cFalse_Honest is how sure she is of

her perception. For example, if she knows only what's she has heard of him on

the grapevine, cFalse_Honest will be low, but if she has direct experience of Rick's

False_Honest (if, for example, she knows that he lied to her), then her

cFalse_Honest will be higher.

This is important because, in drama, different people have differing estimates of

others. Those differing estimates are the source of so much dramatic fodder, as

Relationship Editor http://storytron.pbwiki.com/Relationship-Editor?mode=print

1 of 3 3/13/09 8:30 AM

people gossip about others. And these differing perceptions will be the source of

some conflict themselves. Suppose, for example, that Francesca tells Jane that

she thinks Rick is trustworthy (Rick's False_Honest value is high). Jane, however,

believes that Rick is not trustworthy (Rick's False_Honest value is low). Jane will

note the discrepancy between her existing estimation of Rick and what Francesca

is telling her. Perhaps she will modify her estimation of Rick's False_Honest

upwards. Perhaps she will decide that Francesca is lying. It depends on some

other factors. You can see how our expert Laura Mixon handled this tricky

problem in this portion of an Inclination script from her demonstration storyworld,

ChitChat:

Tell re personality: tellee: contradict: Inclination

...

Blend of:

 1. I have a big diff in perception from you

 BAbsval of:

 BDifference of:

 CorrespondingPActorTrait of:

 ReactingActor

 This4Actor

 This5ActorTrait

 Quantifier2BNumber of:

 This6Quantifier

 2. I am certain I am right in my perception

 BInverse of:

 CorrespondingCActorTrait of:

 ReactingActor

 This4Actor

 This5ActorTrait

...

Going back to the Actor Editor, we can now understand the two concepts of

Accordance and Weight. Accordance is how readily an Actor accords high values of

the Attribute to others. Thus, if Jane has a high accordFalse_Honest, then she

readily assumes that other Actors have high values of False_Honest—in other

words, she's gullible. If she has a low value of accordFalse_Honest, then she's

suspicious: she doesn't give people a high value of False_Honest unless they

prove it to her.

False_HonestWeight is the degree to which an Actor desires to have high

pFalse_Honest values—in other words, how much that Actor desires to be trusted.

An Actor who is vain will have a high value of Ugly_AttractiveWeight; an Actor

with a low value of Cowardly_BraveWeight doesn't care if other people think he's

a coward.

There are three special variables that require your attention: familiarity,

debt_Grace, and stranger_Kin. These are all BNumber variables. The first,

Relationship Editor http://storytron.pbwiki.com/Relationship-Editor?mode=print

2 of 3 3/13/09 8:30 AM

familiarity, is useful for initializing p-values. Notice the little checkboxes next to

each of the regular p-Attributes. If you check one of those, then you're telling

SWAT "I'll fill in this value myself." But if you uncheck this box, then you're telling

the Engine, "Fill it in automatically for me." The Engine will use the familiarity

value along with the accordance value to calculate the p-value directly, so you

don't have to. Here's the algorithm that the Engine uses:

 1. It starts off assuming that the p value is 0.00 (the most likely case)

 2. Then it biases it towards the actual value in proportion to the familiarity

value.

 3. Lastly, it biases it up or down in proportion to the accord value

It's a big time-saver, and it yields good results in most cases. You'll want to use

the manual override (checking the box) rarely.

When you use the automatic procedure by unchecking the checkbox, the c-value

is the same thing as the familiarity value.

Next comes the debt_Grace value. Normally, you'll just initialize this to zero. It

represents the idea of tanagadalang (if you're Indonesian) or an interpersonal

kind of karma, or just the idea that "You owe me." We've found that it can be very

handy in a lot of drama. Remember, it's not necessarily symmetric: two different

Actors can have very different ideas of who owes whom.

Lastly, there's the stranger_Kin relationship. This is used to handle the dramatic

relationship expressed in the adage "Blood is thicker than water." It can also be

used to handle kinship based on marriage, adoption, and so on. It's a little odd,

though, in that 0.0, which normally expresses the "average" value, in this case

should reflect something a little more than that.

Depending on the range and importance of kinship in your storyworld, you can set

the Actors' relationships accordingly. For instance, in a tight-knit family drama,

you may want to set 0.0 as cousins. In a storyworld about racial relations or the

clash between two cultures, 0.0 might represent people of the same clan or

ethnicity. In storyworld of a first contact with extraterrestrials, 0.0 might mean

two Actors are simply of the same species!

Next Tutorial: Spying

Previous Tutorial: Abort Script

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Relationship Editor http://storytron.pbwiki.com/Relationship-Editor?mode=print

3 of 3 3/13/09 8:30 AM

Storytron: Spying
Last edited by Bill Maya 6 days ago

What drama would be complete without somebody spying on somebody else? You

can make this happen in your storyworlds by using the Consequence Script

SetActor: SetSpyingOn.

This Operator takes three arguments:

Spy: the Actor who should do the spying

SpiedUpon: the Actor who should be spied upon

 HowLong: the number of minutes that the Spy should continue spying

\Once this Script executes, the Spy follows SpiedUpon around and witnesses

every overt action taken by SpiedUpon, but remains invisible to SpiedUpon. Spy

cannot witness Events with Verbs of audience type MentalEvent or CheekByJowl,

but does witness anything that a regular witness would see—without SpiedUpon

knowing that he's being observed.

Next Tutorial: Script Editing Tips

Previous Tutorial: Relationship Editor

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Spying http://storytron.pbwiki.com/Spying?mode=print

1 of 1 3/13/09 8:31 AM

Storytron: Script Editing Tips
Last edited by Bill Maya 6 days ago

Here are detailed descriptions of some of the editing conveniences we provide.

Cut, copy, and paste

All of the regular cut, copy, and paste tools work inside Scripts. When you use

them, they act on the selected Operator and all its arguments. Thus, you can

move big chunks of script around with cut and past. Here's an example. Suppose

that you realize that you need to reverse the order of subtraction in this Script:

BDifference of:

 Blend of:

 Nasty_Nice of:

 ThisSubject

 Nasty_Nice of:

 ThisDirObject

 0.0

 0.5

so that the 0.5 is on top and the Blend is on the bottom. To do this, simply select

the Blend Operator, cut, select the 0.5 Operator, and paste. Lastly, enter the 0.5

value in the upper slot.

Outsertion

If you select an Operator in a Script and hold down the Control key while choosing

a new Operator from a Menu, that new Operator will be "outserted"—placed above

the selected Operator. Here's an example.

Existing Script:

 BSum of:

 Fearful_Angry of:

 Joe

 0.5

Select Operator "BSum," then click on "BSum of:" and hold down the Control key

while opening the Arithmetic menu. Select menu item "BInverse" and get this

result:

 BInverse of:

 BSum of:

 Fearful_Angry of:

 Joe

Script Editing Tips http://storytron.pbwiki.com/Script-Editing-Tips?mode=print

1 of 3 3/13/09 8:31 AM

 0.5

You'll use outsertion quite often in your daily scripting work.

Replacement:

You can replace one Operator with another by holding down the Option key before

opening a menu. Example:

Existing Script:

 BSum of:

 Fearful_Angry of:

 Joe

 0.50

Select the Operator BSum, then hold down Option and open Arithmetic menu,

selecting "BDifference." Get new Script:

BDifference of:

 Fearful_Angry of:

 Joe

 0.50

What's especially nice about this trick is that it preservers the arguments of the

original Operator. If you used the direct route, you'd have to erase those internal

arguments. This way, you don't erase them. There is a catch, however. You can't

just replace any Operator with any other Operator. The only Operators that will be

available for you to select are those whose argument types match the argument

types of the original Operator.

This capability extends even to Operators with fewer or more than the number of

arguments of the original Operator. For example, if you replace AND3 with AND4,

the new AND4 will contain the previous three boolean arguments and add a

fourth, undefined boolean Operator at the end. If you go in the other direction,

replacing AND4 with AND3, then the last boolean argument will be deleted.

Collapsing a Script

Suppose you have this Script:

AND

 AreSameActor of:

 ThisSubject

 ReactingActor

 NOT

Script Editing Tips http://storytron.pbwiki.com/Script-Editing-Tips?mode=print

2 of 3 3/13/09 8:31 AM

 AreSameActor of:

 ThisDirObject

 CandidateActor

And you want to get rid of the first "AreSameActor" term. Just click on the NOT

Operator, Copy, click on AND, and Paste. Now it reads:

NOT

 AreSameActor of:

 ThisDirObject

 CandidateActor

Right-clicking

If you select an Operator and click on the right button on your mouse, then you'll

see a long menu pop up next to the selected Operator, containing every single

Operator that you could enter in its stead. Some of those Operators are placed

inside submenus. (Mac users, you can reach the right-click/context-sensitive

menu by holding down the Control key when clicking on the Operator. But the

right-click is so heavily used by Swat that you really should buy a two-button

mouse, such as the Apple Mighty Mouse.)

Next Tutorial: Scriptalyzer

Previous Tutorial: Spying

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Script Editing Tips http://storytron.pbwiki.com/Script-Editing-Tips?mode=print

3 of 3 3/13/09 8:31 AM

Storytron: Scriptalyzer
Last edited by Bill Maya 6 days ago

SWAT provides you with a great many tools for analyzing your storyworld and

figuring out what's going on inside. One of these is Scriptalyzer. You use this tool

to figure out how a Script works.

To try it out, bring up the Script for hit with: hittee: hit with: 4Prop: Desirable.

T'hen click on the button in the upper right corner of the Scripting box that is

labeled "Script."

You'll see a popup menu with just two menu items: "Export" and "Scriptalyzer."

The Export choice is very simple: it saves an HTML file showing the Script. This is

handy for printing out Scripts, or perhaps sending a Script to a friend. The Script

can't be imported back into SWAT, but it can at least be read easily. Be sure to

read it in an HTML display application such as a browser, not a text editor.

But the important menu item here is "Scriptalyzer." Select that menu item and

you'll see a big new window appear:

Here's what it means:

The left column shows the Script that is being analyzed. It's not interactive—it's

just for reference purposes (actually, you can click on the tiny iconettes to open

and close Operators, but it won't mean anything because it doesn't affect the rest

Scriptalyzer http://storytron.pbwiki.com/Scriptalyzer?mode=print

1 of 4 3/13/09 8:31 AM

of the window). The central column shows the results of the Scriptalyzer process.

Those results are pretty complicated, so here goes:

The red marks show what happens when you change the slider settings in the

right hand column. Change the first slider, which represents Harmless_Lethal of

CandidateProp, and watch how the red marks move around in response. Notice

what happens to the PickerUpperIf value as you change the Harmless_Lethal of

CandidateProp. You get two different numbers, depending on whether the

Harmless_Lethal of CandidateProp is greater or smaller than the Harmless_Lethal

of This4Prop. That's the comparison the Script is making, and here you see it in

action.

If you ever want to get a feeling for how a particular Operator works, this is an

excellent place to play. The slider settings you make do not affect anything in the

storyworld; they just show an analysis of the current script's effects. You can

play with them as much as you want without altering your storyworld.

The gray imagery is harder to understand. Think of it as a "sideways light gray

glass histogram."

Great. What's a histogram?

Here's a simple example of how you build a histogram. Suppose that you have a

pair of dice and you roll them and note what you get. Suppose it's a 7. Instead of

writing down "7," you lay out a horizontal graph like so:

and then you plunk down one square to mark the 7 that you rolled, like so:

Scriptalyzer http://storytron.pbwiki.com/Scriptalyzer?mode=print

2 of 4 3/13/09 8:31 AM

Now do it again; say you get a 5. So put a square in the "5" space. And now

repeat this experiment a bunch of times, putting down more squares, and squares

on top of squares if necessary. Eventually you end up with something like this:

Now, suppose that each of those squares was really a glass cube made with light

gray glass. If you were to put a light underneath the histogram and stand over it;

you'd see something like the sideways histogram. Where there are a lot of cubes,

you see less light (dark color). Where there are a few cubes, you see more light

(lighter color).

That's what Scriptalyzer does. Those gray smears in the middle column show how

the results of a thousand experiments came out.

When Scriptalyzer first opens up for a Script, it goes to each of the sliders and

randomly picks a setting for that slider. The red marks all move around in

response to the new settings. Scriptalyzer makes a note of where every red mark

ended up, then starts over, changing the settings of all the sliders to new

Scriptalyzer http://storytron.pbwiki.com/Scriptalyzer?mode=print

3 of 4 3/13/09 8:31 AM

positions. Again, it notes where the red marks end up. Then it does this 998 more

times, ending up with a big pile of data for where all the red marks ended up in all

those 1,000 experiments. Then it builds a histogram out of the results.

An area that's black means that a lot of the experiments put their red marks in

that area. An area that's white means that very few experiments put their red

marks in that area. So you can read the glass histogram to get a quick idea of

how the Script tends to come out on average.

Scriptalyzer is a very handy tool for understanding both Operators and Scripts.

You can learn a lot about the individual Operators by simply playing with

Scriptalyzer. You can also figure out how well your Scripts work using Scriptalyzer.

If a Script is always yielding a result that's too high, say, then you can go into

Scriptalyzer and wiggle around all the sliders, and pretty soon you'll see that only

a few of the sliders really matter. Those are the ones that are biasing your

results.

Next Tutorial: Lizards

Previous Tutorial: Script Editing Tips

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Scriptalyzer http://storytron.pbwiki.com/Scriptalyzer?mode=print

4 of 4 3/13/09 8:31 AM

Storytron: Lizards
Last edited by Bill Maya 25 minutes ago

You know how so many programs come equipped with "Wizards" that will help you

automagically do all sorts of wonderful things? You know how, when you try to

use those "Wizards," they are often unable to solve your problem for you,

because they're actually pretty stupid? Have you ever resented the hype that calls

these stupid functions "Wizards?"

Now you know why we call ours "Lizards."

Lizards are special functions to assist the Author in creating a Storyworld. They

provide you with special ways of examining your Storyworld and its performance.

Scriptalyzer is a kind of lizard, but was kicked out of the Lizard Academy for being

a nerd. The other Lizards are:

ComeFrom Lizard

Whenever you look at a Verb, you can readily see where it goes by just looking at

the Options under the Roles for that Verb. So it's easy to see where things

go—but what if you want to know where they come from? What if you want to

know how somebody could have gotten to the Verb you're editing? That's what

ComeFrom Lizard is designed to do. Just go to the Lizards menu and select the

top item, "ComeFrom Lizard" and you'll see a new pink window pop up:

ComeFrom Lizard lists all the Verb: Role combinations that have the selected Verb

as an Option. If you double-click on one of the listings, SWAT will jump to that

Verb: Role. Whoosh!

Notes Search Lizard

Here's a little scripting trick we haven't told you about: you can annotate your

scripts. Start with any Script in your storyworld and select any Operator. Hit the

"return" key on your keyboard. Look! By the magic of modern technology, a little

text box appears! Of course, you don't get a lot of space in which to work;

Lizards http://storytron.pbwiki.com/Lizards?mode=print

1 of 8 3/13/09 8:32 AM

although you are free to type as much as you want, only the first line of your text

is visible when you're done. Still, it's a useful feature for two reasons:

First, you can explain what you're doing in that part of the Script. This can be

very useful when you come back several weeks later and ask, "What does this

do?" Think of it as a little reminder.

Second, you can use special terms that are unique to a certain type of calculation,

and then later use can use them to find all the Scripts that include those special

terms. This can be very handy, because after a while your storyworld gets full of

thousands (we're not exaggerating: thousands) of Scripts and you forget what

went where.

Let's try it out. Go to the hit with: hittee: hit with: 4Prop: Desirable script in our

testing storyworld.

PickUpperIf of:

 TopGreaterThanBottom(BNumber) of:

Harmless_Lethal of:

 CandidateProp

 Harmless_Lethal of:

 This4Prop

 BInverse of:

 Harmless_Lethal of::

 CandidateProp

 -0.99

What the heck did this script do? Oh, yes. It chose a weapon that did more

damage than the weapon the hittee was just hit with.

Click on PickerUpperIf of: at the top of the script, and hit return. A Notes box

appears. Type in: "choose a weapon that does more damage than the weapon I

was hit with."

Now click TopGreaterThanBottom(BNumber) of: and add the note, "does the

candidate prop do more damage than the prop I was hit with?"

Next, add a note to BInverse of: that says "if yes, Desirability = BInverse of

prop's damage potential."

Finally, click on the -0.99 in the last line and give it this note: "if no, Desirability

= minimum."

Now select "Notes Lizard" from the "Lizards" menu. A wide, short window

appears. Type in the keyword "damage." Notes Lizard will search through all the

Lizards http://storytron.pbwiki.com/Lizards?mode=print

2 of 8 3/13/09 8:32 AM

annotations in all the Scripts and find every Script containing that word:

If you double-click on the Script identification, the Verb Editor will jump directly to

that Verb, Role, and Script (in this case they're all the same). You can use this

search-notes capability by using certain keywords in your script Notes, to help

you find and edit similar scripts.

Operator Search Lizard

Suppose that you've been working on your scripts and you realize that have made

a consistent mistake in the way you have used the Operator

AdjustTired_Energetic. You want to correct those mistakes, but how can you find

every instance of your use of AdjustTired_Energetic? Search Lizard is the lizard

for you. Just select it from the Lizards menu and you'll see a window listing every

single Operator you use in your Scripts, along with how many times you have

used that Operator:

If you scroll down through the window,

you can find AdjustTired_Energetic.

Simply click on the button and you'll

see a new window listing every single

Script that uses AdjustTired_Energetic:

Lizards http://storytron.pbwiki.com/Lizards?mode=print

3 of 8 3/13/09 8:32 AM

Just double-click on the Script listing and the Verb Editor will jump directly to that

Script so you can work with it.

Search Lizard has other uses. At the very top of the Operator listing will be any

"undefined element" Operators. These all begin and end with question marks.

These are the prompt Operators that are automatically inserted into a Script when

you add an Operator. You are supposed to fill them in with normal Operators, but

sometimes we overlook these things. When the Engine tries to run them, it

creates Poison, which kills that part of the story (see Poison for further

information). Therefore, you can use Search Lizard to locate any of these

incomplete Operators and fill them in with the proper values.

Rehearsal Lizard

In creating a storyworld, you often set up clusters of Verbs that link to each other.

It's hard to know from looking at the Inclination Scripts just how often Verb A

leads to Verb B. You could create a rich, dense cluster with all sorts of interesting

possibilities, but in practice you might see all that richness ignored and the

storytrace always traversing the same path through the cluster. How can you find

out whether this happens? Turn to Rehearsal Lizard, and your problem will be

solved.

To use Rehearsal Lizard, you first select and jump to the first Verb in the cluster,

the one that initiates the action. Then select Rehearsal Lizard. He'll show you a

new window:

Lizards http://storytron.pbwiki.com/Lizards?mode=print

4 of 8 3/13/09 8:32 AM

In the example above, the starting Verb was "hit with." That Verb was executed

10 times. It has two Roles (hittee and girlfriend). The black lines indicate how

many times each of the Roles was activated. In this example, "hittee" was

activated four times and "girlfriend" was activated the rest of the time.

From the Roles we branch out to the Options. The "hittee" Role leads to two

Options (hit with and punch), or which hit with was chosen three times and punch

was chosen once. For the "girlfriend" Role, the only Option possible was plead to

desist, which was chosen six times.

Roles are drawn in blue (they represent Actors) and Options are drawn in green

(they represent Verbs). The number of occurrences of the central Verb is

presented inside its circle. The width of the line indicates the number of times a

Role was assumed or an Option chosen. Clicking on an Option jumps to a new

display showing that Option in the central position with its results.

The buttons in the upper left corner provide details on some of the common

problems with storyworlds:

Poison

Lizards http://storytron.pbwiki.com/Lizards?mode=print

5 of 8 3/13/09 8:32 AM

 Lists all instances of Poison and which Script generated it.

ThreadKillers

 Lists all Verbs whose execution failed to generate a reaction, killing that

thread.

Loopy-Boobies

 Lists all Verb sequences in which Actors got caught in a loop.

Storyteller Lizard

This Lizard runs the Storyteller package inside SWAT. Storyteller is the software

the player uses to experience your storyworld. The Storyteller Lizard allows you to

make test runs of your storyworld without having to leave the storyworld

development environment.

Log Lizard

This is the single most powerful analytical tool for understanding the operation of

storyworlds. Every time the Engine makes a critical decision, including every

single Operator of every Script, it logs its decision and the basis for making that

decision. This allows you to review the Events that took place during a storyworld

and figure out why things happened the way they did.

The amount of information generated by the logging is enormous. This takes a lot

of memory and slows down the CPU, so we urge you to keep Storyteller Lizard

sessions to less than a thousand Events. Moreover, the amount of information

that Log Lizard generates is humongous, so we present it to you in an organized

fashion that makes it easier to find what you're looking for:

This is the basic Log Lizard window. Five Events took place during the storyworld;

Lizards http://storytron.pbwiki.com/Lizards?mode=print

6 of 8 3/13/09 8:32 AM

each Event has its own "Page" in the HistoryBook. The time at which the Event

took place is listed along the left edge. The Event itself is presented in

abbreviated form, followed by the name of the Stage on which the Event took

place and the page number of the Event that caused this Event to take place. For

example, at time 2 and page 2, TompunchedFred. This took place on the Stage

called "Joe's Bar" and was a response to Event 1, when Fredpunched Tom. Let's

analyze how that happened. We do so by clicking on the sideways lollipop icon by

Event 1, on the extreme left edge:

This expands the "node" for Page 1, so we can see how each Actor reacted to

Fred's action. You can see that both Mary and Tom considered reacting, but only

Tom actually did react. Let's examine that process by clicking on the lollipop on

the left edge of Tom's line:

This doesn't add much new information; let's examine the first item more closely.

This time we'll double-click on the line starting with "Script Other," which opens

up everything underneath that node. (This way we don't have to single-step

opening the whole thing up):

Lizards http://storytron.pbwiki.com/Lizards?mode=print

7 of 8 3/13/09 8:32 AM

This is the AssumeRoleIf Script that determines whether an Actor assumes a Role.

You can see that it generated an AssumeRoleIf value of true—it decided that yes,

it would assume that Role. How did it decide that? Because the Operator

underneath it (AreSameActor) had a value of true. And how did AreSameActor get

a value of true? Because when it compared ReactingActor (whose value is Tom)

with ThisDirObject (whose value is also Tom), it found that the two Actors are in

fact the same Actor: Tom!

You can learn more about the operation of the Engine by digging into some of the

other Events. It's all laid out there for you in complete detail. If ever you have a

problem, you can see exactly how it happened with Log Lizard.

Next Tutorial: Operators

Previous Tutorial: Scriptalyzer

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Lizards http://storytron.pbwiki.com/Lizards?mode=print

8 of 8 3/13/09 8:32 AM

Storytron: Operators
Last edited by Bill Maya 6 days ago

You can think about Operators in terms of language. Consider this sentence:

"The farmer gave the dog that saved the life of his son a big slab of meat from

the pig he had just slaughtered."

OK, it's a clumsy sentence with too many subsidiary components; a good writer

would break it down into several sentences. But it breaks down into words in

exactly the same way that a Script breaks down into Operators:

gave

 who: The farmer

 to whom: the dog

 that saved

 what: the life

 of whom: his son

 what: the slab

 of meat

 from the pig

 that slaughtered

 who: he

 when: had just

Granted, this is a rather odd way of breaking apart a sentence, but its utility

arises from its defining the components of the sentence in a precise fashion. And

when you're talking to computers, you have to be precise.

This nesting capability of language gives it the power to express any idea, no

matter how complex. And the scripting language of Storytronics uses exactly the

same nesting concept for its Operators.

Operator Types

An Operator produces a value: a number, a Prop, an Actor, etc. There are three

types of Operators:

Getters

Setters

Crunchers

Getters are simple: they simply look up a stored value and return it. Here is an

example of a Getter:

Operators http://storytron.pbwiki.com/Operators?mode=print

1 of 3 3/13/09 8:33 AM

Owner of:

 ThisProp

When you use the Operator Owner of in a script, SWAT gets the name of the Actor

who owns the prop that has just been used in ThisEvent, and plugs it into that

slot in the script.

Setters store a new value into a variable. They are represented by Script Buttons.

The Verb's Consequences, AssumeRoleIf, EmotionalReaction, WordSocket, and

Inclination scripts are all Setters. The way you can recognize a Setter is by the

bent corner on the button.

Crunchers perform some calculation using the values you feed them. Here is an

example of a Cruncher:

BSum of:

 Quiet_Chatty of:

 ReactingActor

 Fear_Anger of:

 ReactingActor

The Operator BSum takes the number representing how talkative ReactingActor is

(that is, her Quiet_Chatty value), and adds to it the value representing how

fearful or angry she is. This Operator might be used to determine how likely an

Actor is to speak her mind in a confrontation, for instance. The more angry she is,

and/or the more outspoken she is, the more likely she will be to argue or

confront.

Nesting of Operators

Many Operators have arguments. "Arguments" is just a fancy name for subsidiary

Operators that provide further specifics on what the Operator is required to do.

Some Operators have just one argument, like these:

Quiet_Chatty of: how loquacious ReactingActor is

 ReactingActor

(We indicate nesting by insetting the argument.)

Other Operators have two arguments, like these:

PQuiet_Chatty of: how loquacious ThisSubject perceives

ThisDirObject to be

Operators http://storytron.pbwiki.com/Operators?mode=print

2 of 3 3/13/09 8:33 AM

 ThisSubject

 ThisDirObject

Here's an example of nesting arguments:

 Quiet_Chatty of:

 Owner of:

 ThisDirProp

Some Operators have no arguments at all; here are a few:

BNumberConstant (a number like 0.0 or 0.5)

ThisSubject (the Subject of the Event that just happened)

ReactingActor (the Actor reacting to the Event that just happened)

Next Tutorial: Special Operators

Previous Tutorial: Lizards

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Operators http://storytron.pbwiki.com/Operators?mode=print

3 of 3 3/13/09 8:33 AM

Storytron: Special Operators
Last edited by Bill Maya 6 days ago

We provide a bunch of special Operators in Sappho to make your life easier. Here

are their definitions:

This___, Past___, Chosen___

These are large groups of operators that apply to specific WordSockets (as well as

some other parts) of the Event. There's an Operator called ThisSubject, which

returns the Subject of the Event that has just taken place. ThisDirObject refers to

the DirObject of the selfsame Event. And so on through all the other WordSockets

(e.g., This4Actor, This5Stage, etc.). But there are even more Operators of this

sort:

ThisTime: the time at which this Event took place.

ThisLocation: the Stage on which this Event took place.

ThisPageNumber: the page number of this Event.

ThisCausalEvent: the Event that caused this Event to happen.

ThisHijacked: whether or not this Event has been hijacked.

We also have Past___ versions of all the This___ Operators, covering exactly the

same material. The only difference is that the Past___ Operator takes an Event as

its argument. You have to specify the past Event that you are referring to, like so:

PastSubject of:

 ThisCausalEvent

This Operator returns the Subject of the Event that caused ThisEvent.

Notice what that tells you about ThisCausalEvent. If ThisEvent is the event that

has just happened, ThisCausalEvent is the Event immediately before that. Let's

take an example of a set of interactions:

 1. Fred punches Joe

 2. Joe passes out

 3. Mary calls the police

So, if you are writing scripts to tell the Engine what it should do next for the Verb

calls, ThisEvent would be Event #3 above, "Mary calls the police," which means

ThisSubject is Mary, and ThisDirObject is the police. ThisCausalEvent would be

Event #2, "Joe passes out." The PastSubject of ThisCausalEvent would be Joe.

Here's a challenge: Assume that ThisEvent is Event #3. What is the value of:

Special Operators http://storytron.pbwiki.com/Special-Operators?mode=print

1 of 5 3/13/09 8:34 AM

PastSubject of:

 PastCausalEvent of:

 ThisCausalEvent

(Answer: Fred)

This is a good example of a simple situation. However, in more complicated

storyworlds, there can be simultaneous activity in different Stages, so it is not

necessarily true that ThisCausalEvent immediately precedes ThisEvent; there

could be other Events from other Stagesbetween these two Events.

Finally, there are the Chosen___ Operators. These are a little tricky. Their purpose

is to let you use decisions that you make in one WordSocket, in a later

WordSocket. They store the values of the WordSockets that you have already

decided upon in your Option scripts. You can't use these Operators in any place

except the Inclination or WordSocket Acceptable and Desirable scripts inside any

Option. SWAT won't let you use the Chosen___ Operators improperly. And SWAT

will only let you use Chosen___ Operators for WordSockets that precede the

WordSocket in which you're working. So if you're writing a Script for the

WordSocket5Prop then you can use ChosenDirObject or Chosen4Stage (if they

exist), but you couldn't use Chosen9Actor, because it hasn't been decided as of

the time of execution of the Script you're working on.

For these purposes, Inclination is the last Script executed, so you can use any of

the Chosen___ Operators in the Inclination Script.

Blending Operators

Blending Operators allow you to mix numbers together in differing ratios. They

serve a number of useful purposes. Suppose, for example, that you want to write

an Inclination Script for Joe's inclination to punch Fred, based on two factors: how

angry Joe is, and how much Joe likes Fred. You want to mix the two factors

together. Here's one way to write your Script (we're assuming here that

PNasty_Nice measures how much the perceiver likes the perceived):

Blend of:

 Fear_Anger

 Joe

 PNasty_Nice

 Joe

 Fred

 0.0

This means "blend Joe's Fear_Anger in equal measure with Joe's PNasty_Nice for

Special Operators http://storytron.pbwiki.com/Special-Operators?mode=print

2 of 5 3/13/09 8:34 AM

Fred." Blend will return the average of the two BNumbers. But here's the really

nice part. Suppose that, when you're testing your storyworld, it always seems as

if the Fear_Anger part plays too big a role in the final result. Once your Actors get

mad, it doesn't seem to matter how much they like a person—they start

punching. You want to tone it down and put more emphasis on PNasty_Nice. No

problem! Just change that final 0.0to something a bit more negative. In Blend,

the final term, called the "bias factor," biases the result towards one or the other

argument. A positive bias factor will put more weight on the upper argument; a

negative bias factor will put more weight on the lower argument. So if you put in,

say, -0.4, then the PNasty_Nice part will get more weight in Blend than the

Fear_Anger part. This feature of the Blend Operator makes it especially useful for

fine-tuning your storyworld.

BlendBothily

This is another blending Operator that operates in a different fashion. We won't go

into the mathematical subtleties involved; We'll just give you a simple rule of

thumb: use Blend most of the time. Use BlendBothily only when you want either

of the two arguments to stomp out the result if it's -0.99. Here's an example of

what we mean:

Blend of:

 +0.99

 -0.99

 0.0

this returns a value of 0.0—the average of the two. But look at this:

BlendBothily of:

 +0.99

 -0.99

 0.0

this returns a value of -0.99 (actually, it returns -0.86, but that's even trickier to

explain).

BlendBothily doesn't give the average of the two values. In other words,

BlendBothily would be only useful in cases where both factors you are considering

must be on the high end of the scale. For instance, let's assume you want to

create a script for an Option called beg for help, which the ReactingActor will only

resort to if both of these conditions are met:

 1) they have a high degree of trust in the beggee

 2) they are very frightened about something

Special Operators http://storytron.pbwiki.com/Special-Operators?mode=print

3 of 5 3/13/09 8:34 AM

In such a case, the inclination script might look like this:

BlendBothily of:

 PFalse_Honest of:

 ReactingActor

 ChosenDirObject

 BInverse of:

 Fearful_Angry of:

 ReactingActor

 0.0

This script says that the ReactingActormust have both a strong perception that

the ChosenDirObject is trustworthy (that is, they perceive them to have a very

high False_Honest value), and the ReactingActormust also be very afraid. If both

are not very high numbers (far over on the right side of the number scale), then

the Option beg for help will not be chosen.

Poly-argument Operators

A few special Operators normally take just two arguments, but in some cases

you'd like to include more arguments. For example, consider BSum. It adds

together two BNumbers. But suppose that you wanted to add three numbers

together? Then you'd have to write something like this:

BSum of:

 BSum of:

 First BNumber

 Second BNumber

 ThirdBNumber

This is clumsy, so we created two new summing Operators: BSum3, which adds

three BNumbers, and BSum4, which adds four BNumbers. We also created similar

Operators for logic: OR3, OR4, AND3, and AND4.

There's also a Blend3 and a Blend4. They differ from the regular Blend in that,

instead of having a single bias factor, they have separate weighting factors for

each argument. Here's an example:

Blend3 of:

 Fear_Anger

 Joe

 0.5

 PNasty_Nice

 Joe

Special Operators http://storytron.pbwiki.com/Special-Operators?mode=print

4 of 5 3/13/09 8:34 AM

 Fred

 0.0

 False_Honest

 Mary

 -0.5

This will blend all three factors together, but Joe's Fear_Anger will get a lot of

weight, his PNasty_Nice will get less, and Mary's False_Honest will get very little

weight.

Next Tutorial: HistoryBook Operators

Previous Tutorial: Operators

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Special Operators http://storytron.pbwiki.com/Special-Operators?mode=print

5 of 5 3/13/09 8:34 AM

Storytron: HistoryBook Operators
Last edited by Bill Maya 6 days ago

The HistoryBook is an especially useful feature; it's a record of every Event that

has taken place in the play of your storyworld. Think of it as "the history of the

storyworld so far." You can look up Events in the HistoryBook to recall exactly

what happened. Here are the Operators you can use:

EventHappened

This is a boolean Operator; it returns a simple yes-or-no answer to the question

"Did the Event fitting this description ever take place?" It takes a single

argument, another boolean, that provides the description in proper form. Here's

an example:

EventHappened

 AND

 AreSameActor

 ReactingActor

 PastSubject of:

 CandidateEvent

 AreSameVerb

 punch

 PastVerb of:

 CandidateEvent

This means, Has any Event ever happened in which the Subject was the

ReactingActor and the Verb was "punch?" You may be a little confused by the use

of "CandidateEvent." Remember, when we ask the Engine to look for "any Event,"

we are telling it to look at each and every Event to make a decision; that decision

has to consider each Event individually. "CandidateEvent" is that "each Event

individually." So we could expand the terse description above into the following

more specific version:

Engine, I want you to examine each and every Event in the whole HistoryBook.

When you look at each Event, we'll call that Event you're looking at

"CandidateEvent." Now, I want you to get the Subject and Verb of that

CandidateEvent. If the Subject of that CandidateEvent is the ReactingActor, and

the Verb is "punch," then return "true."

We also provide a handy little helper Operator: MainClauseIs. We learned in

practice that many of our EventHappened Operators ended up looking like this:

EventHappened

 AND3

 AreSameActor

HistoryBook Operators http://storytron.pbwiki.com/HistoryBook-Operators?mode=print

1 of 5 3/13/09 8:34 AM

 ReactingActor

 PastSubject of:

 CandidateEvent

 AreSameVerb

 punch

 PastVerb of:

 CandidateEvent

 AreSameActor

 ThisDirObject

 PastDirObject of:

 CandidateEvent

Over and over again, we found ourselves specifying the Subject, Verb, and

DirObject of the PastEvent. This became rather tiresome, so we came up with this

handy-dandy little shortcut:

EventHappened

 MainClauseIs

 ReactingActor

 punch

 ThisDirObject

This means exactly the same thing as the previous version, but it's a lot easier to

use.

Why would you use EventHappened? Normally you use it to check whether some

Event has taken place that would be required for a later choice to be made. For

example, suppose that you don't want the Prince to be able to rescue the Princess

until after the Dragon has been slain? Then you might have an Inclination Script

for the Optionrescue looking something like this:

PickUpperIf

 EventHappened

 MainClauseIs

 Prince

 slay

 Dragon

 Maxi

 Mini

LookupEvent

This is what you use to answer questions such as "Is this the same Prop that the

Subject used to hit the ReactingActor previously?" Here is how it is typically

HistoryBook Operators http://storytron.pbwiki.com/HistoryBook-Operators?mode=print

2 of 5 3/13/09 8:34 AM

used:

AreSameProp

 This4Prop

 Past4Prop of:

 LookupEvent of:

 AND

 MainClauseIs

 ThisSubject

 hit with

 ReactingActor

 AreSameProp

 This4Prop

 Past4Prop of:

 CandidateEvent

LookupEvent is found under the History Operators menu.

Here's a fine point about LookupEvent: it searches backwards from the present

and stops at the first Event it finds that meets the specifications. This means that

it will find the most recent Event that meets the specs.

CountEvents

This Operator answers the question "How many times has this happened before?"

For example, you might want to have Charlie Brown ask himself, "How many

times has Lucyyanked the football away when I ran to kick it?" Presumably this

would be used in a Script like this:

Offer to hold football: CharlieBrown: refuse to kick football: Inclination

Number2BNumber of:

 quotient of:

 CountEvents of:

 MainClauseIs

 Lucy

 yank football

 Charlie Brown

 100

There are several important things to notice about this script.

First, note that the entire clause starts off with the Operator Number2BNumber.

You might ask why we need this. If you'll recall from our tutorial on Attributes, all

HistoryBook Operators http://storytron.pbwiki.com/HistoryBook-Operators?mode=print

3 of 5 3/13/09 8:34 AM

traits are BNumbers, and range from -1.0 to +1.0. Again, we do this to be sure

we are always comparing apples to apples, and making it easier to keep our

scripts contained within a similar range of values. But a storyworld's Events don't

range between -1 and +1. They range from 0 on up to 100, 1,000 or more. To

use CountEvents (or any regular number) in a script, we must first convert it to a

BNumber.

Second, note that we divide CountEvents by 100, using the Operator quotient.

This is basically saying that Charlie Brown is in fact capable of learning from his

mistakes, albeit rather slowly. If we wanted to make him a quicker learner, we'd

do this by making the 100 a smaller number—say, 10—or even eliminate the

quotient altogether, and just have Number2BNumber of: CountEvents. Charlie

Brown's inclination to refuse to kick the football would increase a good deal more

rapidly in that case.

"Causal" tests

There is also a corresponding set of Operators that use a slightly different way of

searching the HistoryBook. All the Operators above start at the current Event and

work backwards in time. "Causal" tests (CausalEventHappened,

LookupCausalEvent, CountCausalEvents) only follow the chain of causality

backwards. These tests ignore unrelated Events and look only at those Events

that are directly in the chain of causality leading to the Event being reacted to.

This is a more precisely targeted test that is necessary when you want to make

sure that you're not fooled by an Event that meets your specs but is, by some

strange chance, unrelated to the current Event.

ElapsedTimeSince

This is another rarely-used Operator; you use it to find out how much time has

passed since an Event took place. Example:

Offer donut: DirObject: accept donut: Inclination

Number2BNumber of:

 ElapsedTimeSince

 AND

 AreSameActor

 ReactingActor

 PastSubject of:

 CandidateEvent

 AreSameVerb

 eat donut

 PastVerb of:

 CandidateEvent

HistoryBook Operators http://storytron.pbwiki.com/HistoryBook-Operators?mode=print

4 of 5 3/13/09 8:34 AM

The ReactingActor's Inclination to accept the donut is proportional to how much

time has passed since he last ate a donut. (Notice that when counting time, as

with counting Events, we have to convert the regular number to a BNumber in

order to use it in the script.)

IHaventDoneThisBefore

This is a particularly useful Operator that is meant to obviate repetitious behavior.

What's neat about it is that it's so smart. You can bury it inside a WordSocket and

it will look for matches right up to and including that WordSocket, but it will

ignore anything beyond it. In other words, you don't have to specify the contents

of the WordSockets; it automatically fills them in for you. That's probably

confusing, so here's an example. Suppose that you are having a conversation with

another Actor about a third party. You've been comparing notes about the various

Attributes of that third party. You don't want to ask about an Attribute that you've

previously asked about. You could do this with LookUpCausalEvent, but there's an

easier way:

agree to talk: DirObject: gossip about: ActorAttribute: Acceptable

IHaventDoneThisBefore

That's all it takes! This Operator can only be used within an Option, so you will

notice that it does not appear in the History menu under, for instance,

AssumeRoleIf or Emotional Reaction scripts.

IHaventDoneThisSince

This is a variation on IHaventDoneThisBefore, but it adds a backwards time limit.

It means "I haven't done this in the last X moments." As with

IHaventDoneThisBefore, this Operator can only be used within an Option.

Next Tutorial: More Special Operators

Previous Tutorial: Special Operators

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

HistoryBook Operators http://storytron.pbwiki.com/HistoryBook-Operators?mode=print

5 of 5 3/13/09 8:34 AM

Storytron: More Special Operators
Last edited by Bill Maya 6 days ago

Bigger, Smaller

These are simple Operators; they simply return the bigger or smaller of two

BNumbers.

PickUpperIf

This Operator has three arguments: a Boolean to decide whether or not to pick

the upper BNumber, an upper BNumber, and a lower BNumber. Here's a quick

example:

PickUpperIf of:

 TopGreaterThanBottom(BNumber)

 Nasty_Nice of:

 ThisSubject

 Nasty_Nice of:

 ThisDirObject

 0.5

 0.0

This will return a 0.5 if ThisSubject is nicer than ThisDirObject; otherwise, it will

return 0.0. This is handy for situations where you must make an abrupt choice

between two possibilities based on some yes-or-no factor. It can be used in cases

where the author wants one Option to override all the others under a special

circumstance. An example of such an Inclination Script might look like this:

PickUpperIf of:

 SpecialCircumstance

 Maxi

 Mini

(Maxi and Mini are BNumber constants. Maxi = 0.999 and Mini = -0.999)

This would insure that the Option was a shoo-in when SpecialCircumstance was

true, but otherwise was out of the running.

Actor@Sum

You can use this Operator to add up the Attribute (or perceived Attribute) values

of all the Actors towards one Actor. For example, suppose you want to find out

how trusted Joe is by the female Actors.

More Special Operators http://storytron.pbwiki.com/More-Special-Operators?mode=print

1 of 4 3/13/09 8:34 AM

First, go to the Actor Editor and click the far right green plus sign to add a trait.

Name the new trait Faithless_Honest. Unclick the check box to the right of the

trait. This means the trait is not readily detectable when two Actors meet (an

example of a visible/detectable trait would be Short_Tall. An example of an

invisible or non-detectable trait would be Cowardly_Courageous). Then return to

the Verb editor and choose any Desirable or Inclination script.

Now highlight a BNumber term and then select Actor@Sum from the Actor menu,

and fill out the other terms to get this:

Actor@Sum of:

 Female of:

 CandidateActor

 PFaithless_Honest of:

 CandidateActor

 Joe

This would add up all the female Actors' PFaithless_Honest values towards Joe.

Note that the first term, the Boolean, allows you to filter out Actors based on

whatever acceptability criteria you choose.

Prop@Sum, Stage@Sum, Event@Sum

These Operators function for Props, Stages, and Events, respectively, in the same

way that Actor@Sum does for Actors.

Actor@Average, Prop@Average, Stage@Average, Event@Average

These four Operators behave the same way as their ____@Sum counterparts,

except that they return the average values of the given Attributes, rather than

their totals.

Actor@Tally, Prop@Tally, Stage@Tally, Event@Tally

These Operators use regular numbers, rather than BNumbers. They count up the

number of Actors, Props, Stages, or Events that meet a set of criteria you specify.

You can then convert them to BNumbers and use them in your scripts.

Suppose you want to have the ReactingActor make a decision on whether to

confront a bully or defer the confrontation based on how many allies he or she

has. The inclination script might look something like this:

Number2BNumber of:

 Actor@Tally of:

 TopGreaterThanBottom(BNumber)

 PEnemy_Ally of:

 CandidateActor

More Special Operators http://storytron.pbwiki.com/More-Special-Operators?mode=print

2 of 4 3/13/09 8:34 AM

 ReactingActor

 0.2

Actor@Tally (we pronounce these operators, by the way, as for instance

"ActorTally"—that is, with a silent "@"—reduces the tongue tangles) in the above

script counts the number of Actors whose perception of how allied the

ReactingActor is to them (that is, their PEnemy_Ally value for ReactingActor) is at

least medium-large (i.e., greater than 0.2), and gives you a numerical count from

0 to the total number of Actors in your storyworld (let's call it 4).

Using the Operator Number2BNumber converts this result to a BNumber (all

Desirable and Inclination scripts must result in a BNumber). Applying the

BNumber magic, 4 allies translates into a willingness to confront the bully of 0.8.

Since the BNumber range is about -0.9999 to +0.9999, if you have four allies, 0.8

is pretty high on the scale. A confrontation with the bully is a pretty likely

scenario!

You might want to tune this script to make it less sensitive to the number of

allies. Let's say you want to make it so your Actor will only confront the bully if he

or she has lots of allies. To do so, you can divide the Actor@Tally by, say, 10.0. It

would look like this:

Number2BNumber of:

 quotient of:

Actor@Tally of:

 TopGreaterThanBottom(BNumber)

 PEnemy_Ally of:

 CandidateActor

ReactingActor

 0.2

 10.0

It would take a lot more Allies to make ReactingActor confront the bully. If

ReactingActor has four allies, this script ends up with 0.29 for Inclination. This

script makes a confrontation less likely than the first script above.

Play around with different values for the divisor, and watch what happens in

Scriptalyzer to the likelihood of this Option being taken (For extra credit, see if

you can make the script take into account to the Actor's personal courage. Hint:

the ReactingActor's courage affects how many allies he or she will want, in order

to feel safe).

PickBest___

This is one of the most powerful Operators in Sappho. It will pick the best Actor,

More Special Operators http://storytron.pbwiki.com/More-Special-Operators?mode=print

3 of 4 3/13/09 8:34 AM

Prop, Stage, Verb, Event, ActorTrait, PropTrait, StageTrait, MoodTrait, or Quantifier

depending upon your specifications. And what are your specifications? Nothing

more than the same Acceptable and Desirable subscripts that you use for

WordSockets!

Here's an example:

Suppose we want to pick the Prop that ReactingActor owns that is most lethal.

This would be good if ReactingActor is preparing for a fight.

In the Desirable script choose CorrespondingPropTrait, and then for the PropTrait,

select PickBestProp under Picking in the Operator menu. Here's how the script

looks:

CorrespondingPropTrait of:

 Candidate Prop

 PickBestPropTrait of:

 AreSameActor

 ReactingActor

 Owner of:

 CandidateProp

 Harmless_Lethal of:

 CandidateProp

There will be times when your PickBest___ Operator fails to find anything at all.

For example, in the above script, if the ReactingActor doesn't own any Props at

all, then PickBestProp will not find anything to return. In this case, PickBestProp

will generate Poison that will eliminate the Option from consideration.

Next Tutorial: Who's Fate (part 1)

Previous Tutorial: HistoryBook Operators

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

More Special Operators http://storytron.pbwiki.com/More-Special-Operators?mode=print

4 of 4 3/13/09 8:34 AM

Storytron: Who's Fate (part 1)
Last edited by Bill Maya 6 days ago

Fate is the most important Actor in every storyworld. In fact, Fate is so important

that you can't delete her—she's a permanent fixture.

You know how, in so many movies, the bad guy gets the better of the good guy,

who's now hanging by his fingernails at the edge of the cliff, and the bad guy

laughs demonically and lifts his foot to start mashing the good guy's fingers, when

suddenly a bolt of lightning hits the bad guy and he falls over the cliff and

disappears screaming? Have you ever wondered, who killed the bad guy? The

answer, of course, is Fate. Fate is the one who makes things happen in every

story. In Storytronics, nothing ever "just happens"—Fate makes it happen. No

Event can exist without a Subject, and Fate is always the Subject of those Events

that aren't executed by any other Actor. Fate is a very powerful and useful Actor.

More precisely, Fate is you. You're the author after all. You're the one who makes

things happen. You are the god who controls the universe of the storyworld.

Fateis your avatar—your deus ex machina. Flex your muscles.

Here are some of Fate's unique abilities. Unlike other Actors:

Fate is everywhere in the storyworld* at once.

Fate knows everything that happens.

These special characteristics allow you to put Fate to work in some very useful

ways. You can take note of the storyworld's state, or monitor its progress, based

on a set of specifications. Based on those specifications, you can have Fate trigger

an Event during storyplay, such as an ending, an "act of God," or a major new

Verb cluster. The sections below give you some examples.

Ending a Storyworld with Timeout

Since ending a storyworld is part of Fate's purview, let's digress and talk more

generally about how a storyworld ends. As you discovered when you created the

walkthrough storyworld, it is not strictly necessary to take any action for your

storyworld to end, as it will timeout automatically when nothing happens for a set

period of time.

The default setting for the inactivity timeout is ten moments**. That is, if no one

does anything for ten moments, Fate automatically triggers the penultimateVerb,

which leads directly to the ending Verb, happily ever (penultimateVerb and

happily ever after are System Verbs).

To view and change the timeout setting, click on the Playing menu and choose

Who's Fate (part 1) http://storytron.pbwiki.com/Who%27s-Fate-(part-1)?mode=print

1 of 4 3/13/09 8:35 AM

Termination. You will see a popup like this:

Use the up and down arrows to change the timeout setting, between 1 and 100

moments. Fate will— trigger the ending automatically.

Having Fate Intervene with ClockAlarm

But suppose you don't want your storyworld to end solely based on a timeout?

Suppose you want to trigger the ending—or even different endings, or a new set

of Verb clusters—based on a set of conditions that the player or other Actors have

met? Fate can help you do this. Here is how you do it with a ClockAlarm, as an

outcome of an Event.

Suppose you are working on a mystery storyworld, and you want to trigger the

murder trial to happen shortly after the Protagonist finds the murder weapon

hidden at the scene of the crime.

First, in the Prop Editor, create the prop bloody knife. Now return to the Verb

Editor and create two Verbs. The first Verb is discover clue. Under Properties, give

discover clue a 3Prop WordSocket for the clues to be found. Next create another

Verb called murder weapon found. Under Properties, make this Verb's Audience

Requirement "Under the Hood." This will hide it from the player's view in the

HistoryBook (more about Audience Requirements). Then return to discover clue.

If this were part of a larger web of Verbs, you would have a Role for the

Protagonist under discover clue, so go ahead and create one, for form's sake.

Now add a second Role and name it Fate. The AssumeRoleIf script for discover

clue: Fate should look like this.

AND3

 PermitFateToReact

 AreSameActor:

 Fate

 ReactingActor

Who's Fate (part 1) http://storytron.pbwiki.com/Who%27s-Fate-(part-1)?mode=print

2 of 4 3/13/09 8:35 AM

 AreSameProp

 ThisProp

 BloodyKnife

Now go to the Verb murder weapon found. Go to the Consequences menu and

choose CreateClockAlarm. Its script will look like this:

murder weapon found: ClockAlarm

 Who?

 HowFarAhead?

The Who? in this case would be the judge, who might notify witnesses of the

impending trial, or you might just go straight to the court setting and hold the

trial. HowFarAhead? is how many storymoments you want to pass before the

judge acts. This quantity would depend on how much time you want to give the

Protagonist to do other things before the court appearance.

You can see from this example how to use Fate and a ClockAlarm to trigger new

sets of Verbs, timed to occur when you choose (note, take care to not make the

ClockAlarm time too long, or your storyworld might timeout before the cool new

set of Verbs are ever triggered).

* More precisely, Fate's location is permanently set as "Nowhere" — out in the

digital ether, floating above the heads of all your other Actors. In Storytronics, an

Event always occurs where the Subject is. This is why, when you look in Log

Lizard, you'll see that any action carried out by Fate occurs "Nowhere."

**A storyworld's time is measured in "moments." How long is a moment? As long

or short as you want it to be, pretty much. Storytronic time is flexible. In most

storyworlds, it might be anything from a few seconds to a few minutes, depending

on what is needed for pacing purposes. In Chris's Balance of Power 21st Century,

a "moment" is probably closer to a month.

You can set the number of moments that a Verb takes to execute in the Verb's

Properties box, as mentioned in Properties Box.

Because Storytronics is linguistic and turn-based, you have some flexibility

regarding how much time you want each moment to "last." You can set the

duration of an Event in Properties, but also, just as in traditional storytelling, you

may find that your storyworld will not require a strict clock that accounts for the

passage of time in minutes, so you can play around with how much happens in

one moment versus another. Experiment and see what kinds of effects you can

achieve here.

A caveat: if you have a storyworld in which the duration of Events matters—for

instance, a ticking-bomb storyworld or an Actor whose condition is worsening

quickly and the Protagonist must secure the assistance of a specialist in time; or a

spy story in which multiple threads of action occur in different stages, and those

threads merge at some point—in these cases, you will need to be careful about

how you manage the passage of time in your storyworld. Precision in the duration

Who's Fate (part 1) http://storytron.pbwiki.com/Who%27s-Fate-(part-1)?mode=print

3 of 4 3/13/09 8:35 AM

of Verbs will be much more important.

Next Tutorial: Who's Fate (part 2)

Previous Tutorial: More Special Operators

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Who's Fate (part 1) http://storytron.pbwiki.com/Who%27s-Fate-(part-1)?mode=print

4 of 4 3/13/09 8:35 AM

Storytron: Who's Fate (part 2)
Last edited by Bill Maya 6 days ago

Ending a Storyworld Based on Conditions

You have the ability to track the progress of your storyworld using Fate. Here's

how. Suppose your storyworld is a training storyworld that focuses on teaching

the player to increase other Actors' willingness to take on and complete

challenging tasks (their Timid_Confident values). Let's assume that you want the

storyworld to end after the player through leadership and encouragement

increases the average Actor confidence level to 0.4 or more.

First, create a new Verb called "calculate confidence." In the Properties box, make

the Audience for this Verb Under the Hood. Make the preparation time 10

storymoments. Uncheck the box labeled "occupies DirObject."

Now go to once upon a time. Under the Role for Fate, the AssumeRoleIf script

should look like this:

calculate confidence: Fate: AssumeRoleIf:

 AND

 PermitFateToReact

 AreSameActor

 ReactingActor

 Fate

This simply says that Fate is the only one who can use this Role.

Now remove your first Verb as an Option and add calculate confidence. Also add

penultimate Verb as an Option.

(Note that, if this were a working storyworld, you would also need a separate Role

here for the Protagonist. You would need to hook that Role up to a set of Verbs

that would allow the player to try different tactics in engaging with the

non-human Actors in your storyworld, which would lead to their losing or gaining

confidence. We're not going to bother with this step—just pretend that those

Verbs are all there and would gradually change all the Actors' Timid_Confidence

Core Traits as the player played the storyworld.)

Recall that we said we want Fate to continue allowing the player to play this

training storyworld until the other Actors' average Timid_Confidence reaches an

average of greater than 0.4. This means that Fate will allow the storyworld to

continue to run, as long as the average Timid_Confidence of the non-player Actors

is less than or equal to 0.4. Once it exceeds that, Fate will end the storyworld.

Here's what you have to do to make that happen.

Who's Fate (part 2) http://storytron.pbwiki.com/Who%27s-Fate-(part-2)?mode=print

1 of 3 3/13/09 8:36 AM

For the penultimate VerbOption, here is the DirObject Acceptable script:

AreSameActor

 CandidateActor

 Protagonist

The Inclination script is this:

Actor@Average of:

 NOT

 AreSameActor

 CandidateActor

 Protagonist

 Timid_Confident of:

 CandidateActor

This script calculates the average Timid_Confident value for all Actors except the

Protagonist.

The calculate confidenceInclination script is this:

0.4

Remember, the Story Engine will compare the Inclination of penultimateVerb with

the Inclination for calculate confidence, and will choose the higher value. This is

why we set an Inclination for calculate confidence of 0.4— so that the Story

Engine continues to calculate confidence until the average Timid_Confident

exceeds it. (Also remember that Actor@Average is a BNumber that can range

from nearly -1 to nearly +1, so 0.4 is a pretty high confidence level.)

The Verb once upon a time always kicks off a storyworld. With this Role for Fate,

you have now set things up so that, if the Actors' average confidence is greater

than 0.4 at the storyworld start, it will end right away. Otherwise, Fate will wait

ten moments and then perform the Verbcalculate confidence. But since we

haven't given Fate

anything to do once it reaches the Verbcalculate confidence, we need to create a

Role for Fate there as well.

Copy Fate's Role under once upon a time, go to calculate confidence, and paste

the Role there.

By doing this, you have set up a monitoring loop for Fate. Every ten

storymoments, Fate has to decide what to do: calculate confidence again, or end

the storyworld? If the average confidence level of all Actors except the player

stays at 0.4 or below, Fate will wait ten more minutes, and calculate confidence

Who's Fate (part 2) http://storytron.pbwiki.com/Who%27s-Fate-(part-2)?mode=print

2 of 3 3/13/09 8:36 AM

again. If the average Actor confidence exceeds 0.4, Fate chooses penultimate

Verb instead, and the storyworld ends.

(Incidentally, you'll also need to be sure to set the Actors' Timid_Confidence Traits

so that they average out below 0.4, for this to work. To test whether the script

works, though, you can always set the Actors' Timid_Confidences above 0.4, and

see if the storyworld ends right away. Or simply use Scriptalyzer to simulate the

same effect.)

Unique Characteristics of Fate

Because the Story Engine treats Fate differently than it does the other Actors in

your storyworld, there are some things you need to know, if you build Verbs using

Fate.

First, Fate does not react to Verbs under normal circumstances. The Story Engine

prohibits this, because you wouldn't want Fate butting in all the time. You

want Fate to stay out of action until you specifically want Fate to step in. To

accomplish this, simply use the special-purpose Operator FatesRole in the Role's

AssumeRoleIf script, like so:

FatesRole

Next, since Fate is everywhere at once, you will not get a good result if you try to

make Fate the subject of the system Verbs depart for and arrive at.

Finally, it will do you no good to designate Fate as the DirObject or other XxActor

in a WordSocket. The Engine will studiously ignore you if you do,

because Fate doesn't count as a regular Actor. The good news is, you don't need

to put Fate into a WordSocket. If a Verb triggers and you've given Fate a Role in

response to that Verb, Fate will always react, as long as you include the

AssumeRoleIf script shown above.

Next Tutorial: Poison

Previous Tutorial: Who's Fate (part 1)

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Who's Fate (part 2) http://storytron.pbwiki.com/Who%27s-Fate-(part-2)?mode=print

3 of 3 3/13/09 8:36 AM

Storytron: Poison
Last edited by Bill Maya 6 days ago

Poison is a special layer of protection that the Story Engine provides you. OK, that

probably doesn't sound comforting, but once you understand the concept, you'll

appreciate our terminology.

We have already made it impossible for you to write a Script that is nonsense. You

can't multiply Fred by the chair, nor can you ask whether your first stage is true

or false. We simply don't permit you to write anything that is obviously

nonsensical.

But what about Scripts that make sense most of the time, but, under the wrong

circumstances, MIGHT make no sense? For example, consider this simple Script:

CouchPotato_Athletic of:

 PickBestActor

 NOT

 Female of:

 CandidateActor

 CouchPotato_Athletic of:

 CandidateActor

This will figure out how much of a couch potato or athlete each of the males in the

cast is, and picks the most athletic of them. Sounds reasonable, doesn't it? But

let's suppose that some crazy person playing your storyworld has somehow

managed to kill off every last male in the cast. There aren't any men left! Which

means that PickBestActor won't find anybody to pick. This is a nonsensical

situation! What is our poor Engine to do?

The Engine solves this problem by Poisoning the Option in which the Script

appears. In other words, the Engine says, "I can't make hide nor hair out of this

Script, so I'm giving up on it, which means that I can't complete the calculations

for this Option, so I'm just going to ignore the entire Option." It continues running

the storyworld, but skips over the bad part. The storyworld won't crash and die if

you create a script like this; it will do the best it can with what it's got. And in

fact, there will be times when you decide it's OK for a particular instance of Poison

to happen under certain rare circumstances.

Still, Poison is a dead-end, which means it cuts off options for your player. It can

also interfere with important housekeeping tasks that you might be counting on.

So it's worthwhile to minimize the opportunities for Poison to occur. Here's how

you can diagnose and fix common types of Poison.

How To Know if a Script Is Poisoned

Poison http://storytron.pbwiki.com/Poison?mode=print

1 of 7 3/13/09 8:36 AM

Rehearsal Lizard and Log Lizard both report Poison. Search Lizard can be useful in

finding all places where you use a particular Operator that might result in Poison.

See Lizards for more information on how to use these features of SWAT.

What Happens If a Script Is Poisoned

The results of a script Poison depend on where it occurs. Let's delve a little more

deeply. Here is how a sample Verb would look, when all its elements are working

properly:

All pieces of the Verb are in working order and thus they give meaningful results.

We have some physical Consequences (perhaps a Prop changes hands, perhaps

weather conditions change on a Stage; perhaps an Actor has died). We have two

Roles (one could be the DirObject of ThisVerb; the other might be a Witness).

Both Roles, #1 and #2, contain Emotional Reactions, and the ReactingActors for

those Roles have Options (i.e., opportunities to take action). Each Option provides

the ReactingActors with WordSockets telling them with whom (and/or with what

and/or where) they should react. The Inclinations tell how likely they are to take

the Options.

Poison in a WordSocket or Inclination

Poison http://storytron.pbwiki.com/Poison?mode=print

2 of 7 3/13/09 8:36 AM

If a script gets Poisoned at the WordSocket or Inclination level, the Poison carries

up to the Option level.

At the level of the Option is the lowest possible place this kind of Poison can be

contained, because every WordSocket and Inclination is necessary for the Option

to make sense. The Story Engine handles a Poisoned Option by making it invisible

to the Actors (including the player). In the example shown above, in Role #1, the

ReactingActor will have access to only one Option, Option #2.

Poison in an Emotional Reaction

Poisoned Emotional Reaction scripts do not Poison the rest of the Role.

Poison http://storytron.pbwiki.com/Poison?mode=print

3 of 7 3/13/09 8:36 AM

However, they can affect the outcome of your storyworld. For instance, a Poisoned

Emotional Reaction script could lead the other Actors to treat your Protagonist

exactly the same way after he murders an innocent bystander as they did

beforehand.

Poisoned Consequences

As with Emotional Reactions, Consequences with Poison are self-contained, and do

not prevent the Verb's Roles from being triggered.

Poison http://storytron.pbwiki.com/Poison?mode=print

4 of 7 3/13/09 8:36 AM

But just as with the other types of Poison, they can cause some odd results. For

instance, a Poisoned Consequence could lead to one Actor giving another a Prop,

but the Prop not actually changing hands.

Common Poisonings and How to Prevent Them

You may not be able to prevent every possible instance of Poison in your

storyworld—and sometimes you may not even want to! But armed with some

foreknowledge, you can prevent the most egregious cases. Here are the most

frequent causes of Poison and how to fix them.

HistoryBook Operators

There are a lot of HistoryBook operators, any of which can trigger Poison:

EventHappened, CausalEventHappened, CountEvents, CountCausalEvents,

ElapsedTimeSince, IHaventDoneThisBefore, and IHaventDoneThisSince. Especially

early on during storyplay, the Event you are trying to look up may not have

happened yet.

The only way to avoid a HistoryBook look-up Poisoning is to be certain that the

Event you are attempting to identify has definitely occurred before the Verb in

which you are using the HistoryBook Operator. To identify and correct this kind of

Poison, use Log Lizard or Rehearsal Lizard.

Poison http://storytron.pbwiki.com/Poison?mode=print

5 of 7 3/13/09 8:36 AM

PickBest____ Operators

PickBest____ is another notorious Poisoner. If the Story Engine can't find a match

for the conditions you've specified in a PickBest___ clause, it will kill your script

dead. As with Lookup, the only prevention for this is to ensure that there will

always be at least one thing (Actor, Prop, Trait, or whatever) that fits your

PickBest criteria.

Undefined Script Elements

Here is a very common Poison, and one that is easy to fix. Undefined terms in

your script result in Poison. The fix is to use Search Lizard (see Lizards), which will

generate a clickable list of undefined terms for you. (An undefined term will

always start with a question mark, and will appear at the beginning of the Search

list.) Click, fix, and go!

Change of Word Socket Data Type

When you change a WordSocket from one type to another (e.g., 4Actor to 4Prop),

SWAT does something nifty: instead of throwing away all your scripting work, it

keeps your old script. However, this means you almost certainly have some wrong

data-type Operators in that WordSocket script. For instance, if you had a

5ActorWordSocket, and you changed it to a 5PropWordSocket, the script probably

still contains references to CandidateActor. Since the Engine is no longer

considering CandidateActors for the WordSocket, CandidateActor no longer makes

sense, and if the Engine runs across this, it will Poison the WordSocket (and thus,

the Option).

The way to avoid this kind of Poison is to be sure you immediately update the

related script, when you change a WordSocket data type.

Past____ (and This____ and Chosen____)

Another potential Poison source are the Operators Past____, This____, and

Chosen____ (e.g., PastSubject, This3Actor, ChosenProp, PastStageTrait). This____

and Chosen____ Poisonings are rare, as SWAT has some protections built in, but

just as with other HistoryBook type Operators, Past____ can easily result in

Poison. The best way to track these down is to use Rehearsal Lizard or Log Lizard.

Page Number Less Than Zero

In rare instances, you might try to pin down a specific Event by calculating when

it happens (that is, its page number). If the number you calculate is less than

zero, you will get a Poison. Rehearsal Lizard and Log Lizard allow you to find this

type of Poison.

Poison http://storytron.pbwiki.com/Poison?mode=print

6 of 7 3/13/09 8:36 AM

Divide By Zero

First, a terminology check, for those who like me do multiplication and division all

the time, but haven't referred to the terms for the different since high school. If

you set up a script where you are dividing two terms—say a ÷ b = c—the

dividend is the first number, a; the divisor is the second number, b; and the

quotient is the answer, c. If your divisor (b)is 0, not surprisingly, your script will

blow sky high, as dividing by zero is an arithmetic no-no. Again, the best way to

find these is to run Rehearsal Lizard or Log Lizard. You can also (a) test your

quotients using Scriptalyzer, and (b) double check them using Search Lizard, to

head possible Poisons off at the pass.

Box Reference With An Undefined Box

If you refer to a Box in a script, but you haven't defined it yet, you will get Poison.

Though this isn't foolproof, as a quick check for undefined Boxes, in Search Lizard

you can compare the number of Fill___Boxes (e.g., FillVerbActorBox: the place

where it's defined) versus the number of ___Boxes (e.g., VerbActorBox: the place

where it is used).

Poisoning Exercises

For this tutorial, use your test storyworld with some of the above Operators in

your scripts. Create conditions you know don't exist in your storyworld to

generate Poison. Then try using Log, Rehearsal, and Search Lizards to find and fix

them.

Next Tutorial: WordSockets

Previous Tutorial: Who's Fate (part 2)

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Poison http://storytron.pbwiki.com/Poison?mode=print

7 of 7 3/13/09 8:36 AM

Storytron: WordSockets
Last edited by Bill Maya 6 days ago

Every Verb has its own customized sentence structure. This sentence that you

customize is what the Player interacts with in Storyteller. You define that sentence

structure in the Properties dialog box, with the WordSockets that you set up for

the Verb. The first two WordSockets are fixed and absolute: the first is the

Subject, and the second is the Verb. (Why are they fixed and absolute?

Storytronics is a web of interactions, which means every moment, something

occurs: i.e., a sentence happens. That sentence must have somebody (the

Subject) doing something (a Verb).) After that, you can have as few or as many

WordSockets as you need for the Verb.

What's a WordSocket?

A WordSocket has two parts: its type and its content. The type of the WordSocket

is just the standard data type for words: Actor, Prop, Stage, Verb, Quantifier, or

Attribute. This aspect of WordSockets you set in the Properties box. The content

is which specific object goes in the WordSocket. That piece you set in your script

instructions for those WordSockets, wherever the Verb appears as an Option.

When you create a WordSocket in a Verb's Properties box, in other words, you are

essentially creating a bucket designed to hold script instructions. You are telling

SWAT, "These are the active words I want the player to be able to access for this

Verb, in this order."

For example, the most common WordSocket is the third WordSocket, immediately

after the Verb. This WordSocket often contains an Actor (e.g., the Direct Object

of the Deikto sentence: "Fredpunchyou." "You" is 3Actor, the direct object of the

sentence). The position of the word is the third position, and the data type for

the WordSocket is "Actor." When you choose 3Actor, you are telling SWAT, "Put an

Actor bucket in the third position of the sentence the player will see for this Verb."

In our Walkthrough, we also included how hard Fred and Tom can punch each

other. "How hard?" is a Quantifier data type, and we put it in position four of the

sentence. Here is how punch's WordSockets appear as a Deikto sentence in

Storyteller, versus how they look in the Properties dialog box:

WordSockets http://storytron.pbwiki.com/WordSockets?mode=print

1 of 8 3/13/09 8:36 AM

You can have a maximum of 15 WordSockets in a Sentence, and (except for the

Subject and the Verb), they are designated by a standard system consisting of

the socket number (where it appears in the sentence), followed by the data type

(is it an Actor, a Stage, a Prop, a Quantifier, or an Attribute?. For example,

"9Stage" refers to the ninth WordSocket, which is of data type "Stage."

When you first create a Verb, its Properties dialog box shows that only the first

two WordSockets are active: the Subject and Verb of the Deikto sentence the

player will see, as mentioned above. To add more WordSockets to your Deikto

sentence, simply click on the blank space for the WordSocket at the left edge of

the Properties dialog box, and a popup menu will appear listing the available data

types. The topmost of these is empty, indicating indicating that you want the

WordSocket to be left empty. If you select anything else, then that WordSocket is

active.

However, there's a difference between "active" and "visible to the player." Why?

Because sometimes you want to include information in the Sentence that you will

use for your own purposes, but you don't want the player to see it. We'll talk

more about this feature later, but for now, all you need to know is that the little

checkbox just to the right of the popup menu will, if unchecked, prevent that word

from being displayed to the player.

WordSocket Suffixes and Notes

WordSockets http://storytron.pbwiki.com/WordSockets?mode=print

2 of 8 3/13/09 8:36 AM

Moving further to the right from the popup menu, there's a space for what we call

the "suffix." This is additional text that you want to be included in the Deikto

Sentence to make it more like normal language. This text doesn't matter at all to

the Story Engine, but it helps the player. Here's a good example of the value of

suffixes:

This shows the Properties dialog box for the Verb "offer deal" in Balance of Power:

21st Century. Notice how many WordSockets are used—this is an exceptionally

complicated Verb!

Note all the suffixes. Here's what the Deikto sentence might look like if we didn't

have the suffixes:

WordSockets http://storytron.pbwiki.com/WordSockets?mode=print

3 of 8 3/13/09 8:36 AM

USAoffer dealChinaUSAJapandoJapanapologize

toChinaChinaAfghanistandoAfghanistanhand overbin Laden.

Doesn't make any sense, does it? Now, here's the same sentence with the

suffixes:

USAoffer deal to China in which USA agrees to ask Japan to do this:

Japanapologize toChina in return for which China agrees to ask Afghanistan to do

this: Afghanistanhand over bin Laden.

That makes a lot more sense, doesn't it? That's the value of suffixes: they allow

you to flesh out the sentence with additional text so that it makes more sense. In

fact, when we created the Verb "run away from" in our testing storyworld, we

could have used the suffix "from" and just called the Verb "run away from."

On the far right side of the Properties box is a set of slots called "Note to myself".

These are very useful for keeping straight which WordSocket carries which

component. We have even included a nice touch: if you hover the mouse over a

WordSocket title in the Options display of the Verb Editor, your "Notes to Yourself"

for that WordSocket will pop up.

WordSockets Exercise 1: Using Suffixes and Notes

For this exercise, return to your testing storyworld. Make the following changes:

Go to the Verb hit with. Open the Properties window and add the suffix "the" to

3Actor. To 4Prop, add ", this hard:" as a Suffix. Put something like this, "object

you use to hit your adversary with," as a Note under 4Prop. For 5Quantifier, add a

period in the Suffix field, and "how hard you hit your adversary" as a Note.

Now close the Properties dialog. Look under your Options dropdown, and select

hit with as an Option. You should see WordSockets for DirObject, 4Prop, and

5Quantifier. Place your mouse over the 4Prop header and leave it there a

moment. You should see your Note as a tooltip. Ditto with 5Quantifier.

Make similar kinds types of changes to the WordSocket Suffixes and Notes for

punch, run away from, and plead to desist. Experiment with various Suffixes and

then run Storyteller Lizard, to see what kind of effects you can get in Deikto. Try

adding Notes that give you reminders as to what each WordSocket is supposed to

be, and then hover over the corresponding WordSocket headers to see how they

work.

Housekeeping WordSockets

Here's another useful thing you can do with WordSockets. Take another look at

the Balance of Power: 21st Century example, above. Note that the last three

WordSockets http://storytron.pbwiki.com/WordSockets?mode=print

4 of 8 3/13/09 8:36 AM

WordSockets (13Actor, 14Actor, and 15Prop) are not visible to the player. Chris

discovered while working on his storyworld that in many Verbs he needs to use

the "seeker of the goal", the "owner of the goal", and "the goal" in his Scripts. He

decided to include them in every single Verb in WordSockets 13, 14, and 15. They

get carried through every Event, so that anytime he needs to write a new Script,

he already knows that he has these three key elements immediately at hand.

Using WordSockets like this saves a lot of wear and tear as you create your

storyworld. It helps you avoid having to craft complicated HistoryBook Lookups

that might result in a Poison.

WordSockets Exercise 2: Using Invisible WordSockets

Even in a simple storyworld, this kind of housekeeping WordSocket can be useful.

Recall that in the testing storyworld, in punch: punchee: hit with: 4Prop:

Desirable, we used this:

BInverse of:

 Harmless_Lethal of:

 CandidateProp

This tells the Actor to use the least lethal Prop available.

Whereas, in hit with: hittee: hit with: 4Prop: Desirable, we used this:

PickUpperIf of:

 TopGreaterThanBottom(BNumber)

 Harmless_Lethal of:

 CandidateProp

 Harmless_Lethal of:

 This4Prop

 BInverse of:

 Harmless_Lethal of:

 CandidateProp

 -0.99

This tells the ReactingActor to choose as a weapon the Prop next up the lethality

scale from the Prop he just got hit with.

Why didn't we use the same 4Prop construction for the Option hit with under

punch as we did for the Option hit with under the Verb hit with? Quite simply, we

couldn't. If we tried to use the exact some construction of hit with: 4Prop for

punch as we did for hit with, we would get an error message. To test this for

yourself, go to punch: punchee: hit with: 4Prop: Desirable, and try to create the

PickUpperIf script above. Notice that when you try to select This4Prop, there is no

way to select it from any of the lists. Why? Because punch doesn't use a which

4Prop was used the last time someone decided to do hit with, and as we've

WordSockets http://storytron.pbwiki.com/WordSockets?mode=print

5 of 8 3/13/09 8:36 AM

mentioned before, HistoryBook lookups can get very messy.

Instead, try this. For all of the Verbs in your testing storyworld except run away,

go into the Properties box and create an invisible 15Prop. Label it with a Note that

says something like: "last prop used to hit someone with." It should look

something like this:

After completing this for all your Verbs, you will find that all Options for all three

of your Verbs—punch, hit with, and plead to desist—now have a WordSocket for

15Prop. (Why did we not do this for run away from? Because run away from ends

your storyworld, so you no longer care which Prop was last used to hit with. Thus

there is no need to give yourself the extra work of creating a WordSocket for it.)

WordSockets http://storytron.pbwiki.com/WordSockets?mode=print

6 of 8 3/13/09 8:36 AM

Now you need to do some housekeeping, to make sure 15Prop is properly carried

through all the interactions. It seems as if it might be a lot of work, but in fact it's

not. Wherever the Option hit with appears, this is where we first go to set 15Prop.

This is because the Actors choose a new Prop to hit each other with whenever

they choose hit with.

To start, go to punch: punchee: hit with: 15Prop: Acceptable and enter this:

AreSameProp

 CandidateProp

 Chosen4Prop

This says, whichever 4Prop the ReactingActor has chosen to clobber his adversary

with, store the name of that Prop under 15Prop as well.

Now copy the entire Optionhit with (Edit > Copy Option), and go to the each of

the other Roles for Verbs in your storyworld (punch and plead to desist).

Wherever you find an existing Optionhit with, delete the old version. To do so,

select hit with in the Options dropdown list, then click on the red minus sign.

Next, paste the Option (Edit > Paste Option) to add the new version of hit with to

your Options list.

Check whether you got all the new hit withOptions installed correctly by double

clicking on hit with in the pink Verbs list. Select Comefroms Lizard(Lizards >

Comefroms Lizard). This will give you a clickable list of all places where you used

hit with as an Option. All the 15Prop scripts for Option: hit with should look like

the above.

Return to the verb punch. For every other Option, the Acceptable script for 15Prop

will look like this:

AreSameProp

 CandidateProp

 This15Prop

This carries 15Prop forward as the last Prop used for clobbering purposes, until

someone next chooses the Optionhit with. Now you can either copy the script

above, and paste it into all your non-hit-with Options for the Verbspunch, hit with,

and plead to desist.

Before we go on, let's take a moment to answer a question that may be in your

mind. Why the difference between 15Prop Acceptable scripts for hit with versus

the others? The answer is that hit with is the only action taken that changes what

the last prop used is. In fact, for extra credit, try copying and pasting the script

for hit with's 15Prop into one of the others, and watch what happens. You will get

an error message telling you that there is no Chosen4Prop for, say, punch. Which

is true—Chosen____ can only be used for WordSockets that exist for that Option.

WordSockets http://storytron.pbwiki.com/WordSockets?mode=print

7 of 8 3/13/09 8:36 AM

You can make sure you got all the 15Prop scripts correctly assigned in either of

two ways. First, go to punch and select Comefrom Lizard. This will give you a

clickable list of all places where you used punch as an Option. Paste the script in

for 15Prop: Acceptable for all punch come-froms. Use the back arrow to return to

punch, and select the next one on the list. Then do the same process for plead to

desist.

Last but not least, if you want to make sure you got all of them, go to Search

Lizard and look for ?Condition?. Replace any undefined terms for 15Prop:

Acceptable with one of the two scripts above.

Next Tutorial: System Verbs

Previous Tutorial: Poison

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

WordSockets http://storytron.pbwiki.com/WordSockets?mode=print

8 of 8 3/13/09 8:36 AM

Storytron: System Verbs
Last edited by Bill Maya 6 days ago

Storytron provides a set of standard Verbs that automatically provide special

capabilities, which are necessary for many storyworlds. They are included in the

“System” Verb category.

System Verbs have a number of uses, but because they are used in special ways

inside the Story Engine, you need to take care with these Verbs except as we

describe, or your storyworld may crash. Never delete System Verbs. The

Engine needs them in order to do its job.

Here is a table of the System Verbs, how they are used, and a few do's and

don't's.

SYSTEM VERB WHAT IT'S FOR HOW TO USE IT NOTES, CAUTIONS,

LIMITS

Story Start and End These Verbs trigger the beginning and ending of your storyworld.

Once Upon a Time This Verb starts every storyworld.
It automatically triggers the Verb
your first verb with the Protagonist
(Actor1) as the DirObject.

DO NOT USE THIS VERB. This is a housekeeping Verb. Not
recommended for use as part of
your Verb web.

Your First Verb This Verb is triggered by Fate, and
is the first one your player will see.

Rename it and use it as the first
Event in your storyworld.

Modify as you see fit.

Penultimate Verb When the Engine decides that it is
time for the story to end, the Event
"Fate penultimate verb" will take
place. Two things trigger
penultimate verb: the Procedure
SetStoryIsOver and the Playing
menu item, Termination (Timeout).

You can add a Role to this Verb
that calculates the player's score
(if you have a score) or any other
calculation that you think
appropriate.

Use the Verb happily ever after
as an Option for this Role and
Fate will present as the last Event
"Fate happily ever after you this
much: [player's score]." You can
also, if you wish, insert
additional Verbs between
penultimate verb and happily
ever after to provide more
feedback to the player.

If you create an intervening set of
Verbs between penultimate verb and
happily ever after, every intervening
Verb thread MUST end in happily
ever after. If not, your storyworld
will never end.

Happily Ever After Penultimate verb leads
automatically to happily ever after,
unless you include intervening
story feedback Verbs in between
the two.

The default condition is that
happily ever after directly
follows penultimate verb. See
above for alternative uses.

As mentioned above, every Verb
thread that follows penultimate verb
must end with happily ever after or
your storyworld will not end
properly.

Alarms Set these Verbs to trigger when certain special situations arise.

ClockAlarm ClockAlarms are created in the
Consequences section for a Verb.
You'll find the Procedure
"CreateClockAlarm" in the Alarms
submenu of the Consequences
menu.

Use a ClockAlarm to trigger
something that you wish to occur
after a specific time delay.

When the time comes, an Event
"Fate ClockAlarm
YourSpecifiedActor" will take
place. The player will not see
that Event but you can place
Roles and Options in the
ClockAlarm Verb to make things
happen.

When you create a ClockAlarm, you
must specify two factors: who the
alarm is for, and how far ahead in
time it should take place.
ClockAlarms can occur at any time,
and they are set in relative time
terms (that is, relative to the Event
in which you place a ClockAlarm),
not absolute time terms.

System Verbs http://storytron.pbwiki.com/System-Verbs?mode=print

1 of 2 3/13/09 8:37 AM

MeetingAlarm This Alarm is created in exactly the
same way that the ClockAlarm is
created: with the
CreateMeetingAlarm item in the
Consequences menu. The most
valuable use of this Verb is in
providing special introductions to
new Actors.

Use the MeetingAlarm to trigger
special-case verbs or Roles, the
first time they meet after you
create the alarm. After this
happens the alarm will be erased.

You must specify two arguments for
CreateMeetingAlarm: Actor1 and
Actor2. The next time these two
Actors find themselves on the same
Stage, an Event "Fate
MeetingAlarm" Actor1, Actor2"
will take place. The player will not
see that Event but you can place
Roles and Options in the
MeetingAlarm Verb to make things
happen.

PropAlarm Similar to MeetingAlarm Use a PropAlarm when the
specified Actor first encounters
the specified Prop. Its primary
use is for providing introductions
to important Props.

Similar to MeetingAlarm

StageAlarm Similar to MeetingAlarm Use a StageAlarm to trigger
special-case Roles or Verbs,
when the specified Actor first
enters the specified Stage. Again,
its primary use is for providing
introductions.

Similar to MeetingAlarm

Player Prompts These are generic Verbs the Engine uses to cue the player.

Do what? Used as a prompt for the player. Not recommended for author's
use.

This is a housekeeping Verb. Not
recommended for use as part of
your Verb web.

OK A do-nothing Verb that allows the
player to acknowledge an Event
without having to take an action.

Use this Verb when you want
Actors to have the Option to do
nothing in response to an Event.
Delete it if you want to force
Actors to make a choice.

Use as an Option but do not modify.

Travel The Engine uses these Verbs to move the Actors from Stage to Stage.

Depart for The Engine uses this Verb to move
an Actor from Stage to Stage.
Normally, the Engine moves Actors
around for you automatically,
making sure that Actors run into
each other frequently. It also
guarantees that if one Actor has a
Plan to do something requiring
another Actor, they will meet in
order to permit that Plan to take
place.

There are rare occasions that may
require your intervention; in
these cases, use depart for as an
Option and the Engine will move
the Actor to that Stage.

CAUTION! Do not use depart for
unless the Actor absolutely,
positively must get there as soon as
possible. You can use
SetTargetStage and the Actor will
get there ASAP most of the time. In
general, it's a better idea to use
SetTargetStage than depart for.

Arrive at The Engine uses this Verb to tell
you that an Actor has arrived at
their destination.

DO NOT USE THIS VERB. NEVER EVER select arrive at as an
Option for another Verb! It will
mess up your storyworld. The
Engine will handle arrival
automatically.

Next Tutorial: Audience Requirements

Previous Tutorial: WordSockets

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

System Verbs http://storytron.pbwiki.com/System-Verbs?mode=print

2 of 2 3/13/09 8:37 AM

Storytron: Audience Requirements
Last edited by Bill Maya 6 days ago

The Audience setting for a Verb is specified using the Audience menu in the

Properties box.

Most of the time we don't really care who else is present on the Stage on which

the Subject is executing a Verb—our only concern is that the DirObject, if there is

one, must be there. After all, Joe can't punchFred if Fred isn't there. However,

there are a few situations that impose special considerations on who must be

present—or absent—from a Stage in order for the Subject to execute the Verb. In

other words, the Subject might balk at executing the Verb if the wrong people are

present. We handle these requirements using the "Audience" specification for the

Verb. Here are some examples:

Anybody: This is the default audience requirement setting. Anybody

means anyone present on the Stage where the Event occurs. Use this

setting when it doesn't matter who is present. All Actors present witness

the Event.

Subject Only: Use this when the Subject is up to something that he

doesn't want anybody else to know about. For example, he's engaging in

shameful solitary sexual practices, or preparing the equipment for a

crime, or doing something stupid. If your Verb demands privacy for the

Subject, then use the "Subject Only" Audience setting.

Subject & DirObject Only: Use this Audience setting when Subject and

DirObject must both be present, and nobody else. For example, you might

want to use this for Verbs of an intimate romantic or sexual nature.

All Involved: Every Actor involved in the Event must be present. This

Audience Requirements http://storytron.pbwiki.com/Audience-Requirements?mode=print

1 of 2 3/13/09 8:37 AM

would apply to any additional Actor WordSockets. You might use this for a

Verb such as "counsel antagonists" wherein the Subject admonishes two

other people to kiss and make up. Obviously, this Verb won't work if one

of those people is missing.

The above Audience settings will cause a Subject to delay executing the Verb until

the Audience requirements are satisfied. However, there are also some Audience

settings that won't cause an Actor to defer execution of the Verb; they only

control who gets to witness the execution of the Verb. These are:

Everybody: This applies to an Event so sensational that everybody is instantly

aware of the Event. The grapevine spreads the word spontaneously. Think of how

everybody in America knew about 9/11 almost immediately. When you use this

Audience setting, everybody witnesses and reacts to it immediately, regardless of

their locations.

Mental State: the Subject is thinking about something, making a decision.

Although other Actors may be on the same Stage, they are unaware of Subject's

action.

Cheek by Jowl: the Subject and DirObject are leaning close together, whispering

to each other. Other Actors on the same Stage are unaware of this Event.

Under the Hood: nobody witnesses, and Event does not go into HistoryBook.

You should only use Fate as the Subject of an Under the Hood Verb.

Next Tutorial: More About Attributes

Previous Tutorial: System Verbs

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Audience Requirements http://storytron.pbwiki.com/Audience-Requirements?mode=print

2 of 2 3/13/09 8:37 AM

Storytron: More About Attributes
Last edited by Bill Maya 6 days ago

In Attributes we talked about Actor, Prop, and Stage core traits and

characteristics. In Relationship Editor we touched on Accordance and perceived

traits. This tutorial provides more detail on how you can put Weight Traits and

Corresponding Traits to use in your scripts.

Weight Traits

In the Actor Editor, you will see that for every Actor Trait, there is a corresponding

WeightTrait. WeightTraits are very powerful storytelling tools.

An Actor's Trait tells you what they are really like. Their Weight Trait tells you how

they want to be perceived: i.e., how much they value the given Trait. For

instance, in our testing storyworld, Fred may be rather hotheaded (that is, he has

a somewhat large Cool_Volatile value), but he may want to be perceived as

levelheaded. This disparity between your who characters are, and who they wish

they were, is at the heart of good storytelling, and you can use it to achieve

strong effects. See Corresponding Traits below for an example of how this

disparity can be used in scripting.

Also, since WeightTraits reflect the characteristics the Actors value in themselves,

as a general rule, WeightTraits can also be used as an indicator of what your

Actors value in others. Here's an example.

Let's say Carmina has just learned that her friend Florence has deceived her

about something fairly minor. Two different kinds of emotional reactions might be

appropriate for Carmina:

By how much will her perception of Florence's trustworthiness change?1.

How angry she does get about being deceived?2.

Clearly, Carmina's perception of her friend's honesty will always decrease, if she

finds out she has been lied to. But how angry she gets can vary. If she values

honesty highly (that is, she has a high False_HonestWeight value—say, 0.4 or so),

she might be furious over even a small deception. But if she has a low

False_HonestWeight (say, -0.4)—even if she has a high False_Honest!—she does

not place a high premium on honesty, either in herself, or in others. In this case,

she might get mildly irritated, but would be more tolerant of Florence's fib.

Here is how the AdjustFearful_Angry Script might look:

fib to: fibbee: AdjustFearful_Angry

 BNumber2UNumber of:

More About Attributes http://storytron.pbwiki.com/More-About-Attributes?mode=print

1 of 3 3/13/09 8:37 AM

 False_HonestWeight of:

 ReactingActor

The BNumber2UNumber term says the Actor will never become fearful over being

lied to; only angry. The extent to which the ReactingActor values the

characteristic of honesty determines how mad a fib will make him or her. Create

this script and then test it in Scriptalyzer. Notice how differently the script

behaves for a high False_HonestWeight versus a low one.

Corresponding Traits

Here is how to use the Corresponding___Trait set of Operators.

For every invisible core Attribute, there is a corresponding set of related

Attributes. For Actors the traits include:

Xxx_Yyy (Core Trait - e.g., Cool_Volatile)

AccordXxx_Yyy (Accordance Trait - e.g., AccordCool_Volatile)

Xxx_YyyWeight (Weight Trait - e.g., Cool_VolatileWeight)

pXxx_Yyy (Perceived Trait - e.g., pCool_Volatile)

pXxx_YyyWeight (Perceived WeightTrait - e.g., pCool_VolatileWeight)

cXxx_Yyy (Confidence Trait - e.g., cCool_Volatile)

For Props:

Xxx_Yyy (Core Trait - e.g., Harmless_Lethal)

pXxx_Yyy (Perceived Trait - e.g., pHarmless_Lethal)

cXxx_Yyy (Confidence Trait - e.g., cHarmless_Lethal)

For Stages:

Xxx_Yyy (Core Trait - e.g., Grungy_Elegant)

pXxx_Yyy (Perceived Trait - e.g., pGrungy_Elegant)

The Corresponding___Trait Operators allow you to cross-reference these different

related Attributes. Here is an example.

Assume that you want to create a sequence where Actors can insult each other.

Let's assume that the Actors have three different choices. They can call their foe

ugly, stupid, or mean. In the Verbinsult appearance, the Deikto sentence would

look something like this:

More About Attributes http://storytron.pbwiki.com/More-About-Attributes?mode=print

2 of 3 3/13/09 8:37 AM

Subject - insult appearance - DirObject - 4ActorTrait - 5Quantifier

— where 4ActorTrait is the Attribute that ReactingActor wants to insult, and

5Quantifier is the degree of insult.

To use this script, your ReactingActors have to figure out what they believe their

foe is most sensitive about. It turns out that there is a simple way to do this.

Storytronic Actors all have a perception of each others' personalities, including

how important certain characteristics are to them. These latter perceptions of

others' values are the Actors' p___WeightTraits. In other words, Mark's

pStupid_SmartWeight for Jonathan is how much Mark thinks Jonathan wants to

be perceived as smart.

The 4ActorTrait Desirable WordSocket, then, would look like this:

CorrespondingPWeight of:

 ReactingActor

 ThisSubject

 Candidate4ActorTrait

With this script, ReactingActor chooses the Attribute he or she believes the

DirObject is most sensitive about.

(For extra credit, can you figure out what the 5QuantifierWordSocket scripts

should look like? As a suggestion, you might tie the intensity of the insult to how

much ReactingActor dislikes ThisSubject; that is the pNasty_Nice of ReactingActor

for ThisSubject. Or you might use Fearful_Angry. A couple of hints: to make this

Verb work properly, all traits that are deemed acceptable for insult will need to be

bipolar, and you will need to use BInverse of BNumber2UNumber if you want the

Actor to always say something negative.)

Next Tutorial: Quantifiers

Previous Tutorial: Audience Requirements

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

More About Attributes http://storytron.pbwiki.com/More-About-Attributes?mode=print

3 of 3 3/13/09 8:37 AM

Storytron: Quantifiers
Last edited by Bill Maya 6 days ago

Another type of word that we use in Deikto is a Quantifier. This is a word that

indicates the magnitude of some quantity. Quantifiers can be used to intensify a

Verbor modify an Attribute. There are eleven Quantifiers:

extra tiny (-0.99)

tiny (-0.8)

very small (-0.6)

small (-0.4)

medium-small (-0.2)

medium (0.0)

medium-large (+0.2)

large (+0.4)

very large (+0.6)

huge (+0.8)

extra huge (+0.99)

There are two situations in which you will write scripts using Quantifiers:

Writing the Acceptable and Desirable scripts for a QuantifierWordSocket; and1.

Using an existing Quantifier to calculate a result.2.

Let’s take them separately:

How to Write Acceptable and Desirable Scripts for a Quantifier

Assume you want to set a Quantifier to be equivalent to an Actor's Fearful_Angry.

The scripts for that Quantifier's WordSocket would look like this:

Acceptable:

 true

Desirable:

 Suitability of:

 CandidateQuantifier

 Fearful_Angry of:

 ReactingActor

Suitability is a special Operator that we cooked up just to handle the problem of

selecting the right Quantifier for a position. It yields the highest value for the

CandidateQuantifier most closely corresponding to the value of the BNumber

Quantifiers http://storytron.pbwiki.com/Quantifiers?mode=print

1 of 5 3/13/09 8:38 AM

argument.

Following is an exercise for how you might use a Quantifier.

Exercise 1: Setting a Quantifier in your Walkthrough Storyworld

Let's harken back to the testing storyworld created in the first tutorial section.

Tom and Fred get into a bar fight, and Mary intervenes with Fred when he hits

Tom with a Prop. Her only choice was to plead to desist. Let's add a Verb scold.

First, we need some more Attributes to make this work properly. Go to the Actor

Editor and add two Attributes: Submissive_Dominant and Nasty_Nice. Assign

Submissive_Dominant, Nasty_Nice, Submissive_DominantWeight, and

Nasty_NiceWeight values for each of the Actors. (Recall that the Attributes

themselves describe how much of that personality trait an Actor has, whereas the

Weights tell how much the Actor wants to be perceived as having that Trait.

Consequently Weights also reflect how important it is to the Actor that others

have that Trait.)

Now return to the Verb Editor. Create a new Verb, scold, in your walkthrough

storyworld, give it 3Actor and 4QuantifierWordSockets under Properties, and add

it as an Option for the girlfriendRole under hit with. Now create two emotional

reactions for Mary.

your first category: hit with: girlfiend: Adjust Fearful_Angry:

Submissive_Dominant of:

 ReactingActor

This script says that Mary will either become fearful to see Tom hit with an object,

or angry, depending on how submissive or dominant she is.

Next, let's adjust her opinion of Fred:

your first category: hit with: girlfiend: Adjust PNasty_Nice:

ThisSubject

 BInverse of:

 BNumber2UNumber of:

 Harmless_Lethal of:

 This4Prop

This says that Mary's opinion of ThisSubject's (that is, Fred's) niceness will always

go down (BInverse of BNumber2UNumber accomplishes this). That is, Mary never

likes to see anyone hitting her boyfriend, Tom. How far her opinion of how nice he

Quantifiers http://storytron.pbwiki.com/Quantifiers?mode=print

2 of 5 3/13/09 8:38 AM

is will drop is affected by how lethal the Prop is that was used to hit Tom. (To see

why this script works the way it does, look at how this script behaves in

Scriptalyzer. We'll talk more about UNumbers, BNumbers, and so forth in our next

tutorial, BNumbers, UNumbers, and Numbers.)

Now look under the Optionscold. Make the Inclination to scold match the

Fearful_Angry of ReactingActor. This says that Mary will only scoldFred if she is

angry; otherwise, she will plead for him to desist.

Then create the scripts shown above for 4Quantifier.

Acceptable:

 true

Desirable:

 Suitability of:

 CandidateQuantifier

 Fearful_Angry of:

 ReactingActor

This says that the intensity of Mary's scolding of Fred will match the level of her

anger.

How to Use an Existing Quantifier to Calculate a Result

Quantifiers can be used to affect Actors' decisions. To do this, the exact value of

the Quantifier (e.g., "tiny," "very large," etc.) must be convert to a value that can

be used in a Desirable or Inclination script. Depending on your needs, you can

convert a Quantifier and use it as a BNumber, UNumber, or Number.

To convert an existing Quantifier to a BNumber, in response to an action using

that Quantifier, use the following script:

Quantifier2BNumber of:

 This5Quantifier

This assumes that the Verb you are scripting in has a Quantifier in the 5th

position. It tells the Engine to convert that Quantifier (extra tiny through extra

huge) to a BNumber (-0.99 through +0.99) (Warning: if ThisVerb does not have a

5Quantifier in Properties, you will not be able to access the Operator

"This5Quantifier.")

To convert a Quantifier to a UNumber under the same circumstances, use the

following script:

Quantifier2UNumber of:

 This5Quantifier

Quantifiers http://storytron.pbwiki.com/Quantifiers?mode=print

3 of 5 3/13/09 8:38 AM

This converts This5Quantifier to a UNumber (0.0 through 1.0).

To convert a Quantifier to a Number, use the following:

Quantifier2Scaler of:

 This5Quantifier

This converts This5Quantifier to a Number (0.0 through 1.0). (Quantifier2Scaler

returns the same numerical value as Quantifier2UNumber, only with a Number

data type instead of a UNumber/ BNumber data type.)

More on BNumbers, UNumbers, and Numbers can be found in the next tutorial.

Exercise 2: Scripting with a Quantifier

Carrying on from Exercise #1, above, let's assume that Fred has just been

scolded by Mary. Now he has to respond, and he will respond according to how

sternly Mary has scolded him.

First we need to give Fred some Options. Let's create two new Verbs: apologize

and yell at. Give each new Verb a 3ActorWordSocket (hint: see the Verbs'

Properties boxes). Then return to scold and add a Role, scoldee. This will be

Fred's Role, but let's save ourselves some work. We'll write the AssumeRoleIf

script such that others can use it as well, in case we want to allow other Actors to

scold each other in different settings. Use this:

your first category: scold: scoldee

AreSameActor

 ReactingActor

 ThisDirObject

The person who will assume the Role will be the person just scolded—in our

example, Fred.

Now add apologize and yell at as Options. To do so, single-click on each Verb in

the Verb tree, and then use the green plus-arrow below the Options dropdown

box.

For both apologize and yell at, here is the DirObjectWordSocket:

Acceptable:

 AreSameActor:

 CandidateActor

 This Subject

Quantifiers http://storytron.pbwiki.com/Quantifiers?mode=print

4 of 5 3/13/09 8:38 AM

This says the scolder will be the person scoldee reacts to (if you wanted to get

fancy, you could have him apologize to Tom instead, as Tom was the one he was

hitting...but let's keep it simple for now). Desirable you can leave as is.

For yell at, use this for the Inclination:

your first category: scold: scoldee: yell at

 Quantifier2UNumber of:

 This5Quantifier

Fred's Inclination to yell atMary depends on how severely she scolded him.

Notice we converted the Quantifier to a UNumber instead of a BNumber. This

means that the lowest possible value for yell at: Inclination is a hair above zero.

This is because we assumed that even a tiny scold might make him inclined to

react defensively instead of apologetically. However, you could use

Quantifier2BNumber instead. This would make Fred less likely to yell atMary if she

scolded him. See what we mean by experimenting with each Quantifier

conversion Operator in Scriptalyzer.

Now, for apologize, make the Inclination this:

your first category: scold: scoldee: apologize

 pNasty_Nice of:

 ReactingActor

 ThisSubject

This says that Fred's Inclination to apologize to Mary hinges on how much he likes

Mary (for how much he likes her, I've used his perception of how nice she is; i.e.,

his pNasty_Nice of her). The Engine will compare Fred's pNasty_Nice of Mary to

how severely she scolded him, and assign Fred a plan to either yell at her, or

apologize, accordingly.

Once you have the scripts all built, try your test storyworld out in Storyteller, and

see what happens. Then try adjusting the Actors' personality and relationship

Attributes, and see how that changes the outcome.

Next Tutorial: BNumbers, UNumbers, and Numbers

Previous Tutorial: More About Attributes

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Quantifiers http://storytron.pbwiki.com/Quantifiers?mode=print

5 of 5 3/13/09 8:38 AM

Storytron: BNumbers, UNumbers, and Numbers
Last edited by Bill Maya 6 days ago

BNumbers are the standard number type that we apply to all Attributes. They are

the number type you will use most often in scripting. However, there are some

situations that call for different kinds of numbers, and so we also provide two

other kinds of numbers: UNumbers, and regular Numbers.

How to Use BNumbers

As mentioned in Attributes, BNumbers are designed to put everything on a

consistent scale. They make it possible for you to have Actors with all of their

physical, emotional, and relationship Attributes—not to mention all the Props and

Stages and their Attributes—behaving in ways that can be expressed in similar

mathematical terms. Storyworlds are a simplified reflection of the real world, and

we need some way to put dramatic concepts into terms the computer can

understand. Basically, BNumbers allow you to compare apples to oranges and

typhoid to hairnets. Though they can be a hassle to figure out when you first start

using them, BNumbers solve the problem of how to juggle many different kinds of

information within a single storyworld.

The primary BNumber Operators are BSum, BDifference, BProduct, BInverse,

BAbsVal, and Blend. Understanding these six Operators will enable you to do most

of what you will want to do in scripting. There are many other BNumber Operators

in addition to these. You can download and view all SWAT Operators in Snips,

Tips, and Tricks. Also, see Attributes for further detail on BNumbers.

Exercise 1: Using BNumber Operators

As we mentioned in earlier tutorials, BNumbers behave very differently from

regular Numbers. If BNumbers are still giving you headaches, here is a simple set

of exercises that can help you wrap your head around how they behave.

Go to any Inclination or Desirable script. Insert the BNumber Operator BSum in

the following format:

BSum of:

 Number1?

 Number2?

In the script, set both Arguments to 0.0. Then open Scriptalyzer. Use the slider

bars as follows.

a. Set Number1 to 0.0.

b. Write down the overall result you get for BSum when Number1 is 0.0 and

Number2 is -0.99.

c. Write down the result when Number2 is 0.0.

BNumbers, UNumbers, and Numbers http://storytron.pbwiki.com/BNumbers%2C-UNumbers%2C-a...

1 of 6 3/13/09 8:38 AM

d. Write down the result when Number2+0.99.

e. Repeat a-d. with Number1 set to -0.99 and Number2 set first to -0.99, then

0.0, then +0.99. Write down the three different results.

f. Repeat a-d. with Number1 set at +0.99 and Number2 set first to -0.99, then

0.0, then +0.99. Write down the results.

Now do the exercises in a-f. above for BDifference, BProduct, BAbsVal, and Blend.

For BAbsval, you will only need one parameter: Number1 = -0.99, 0.0, and

+0.99.

For Blend, you will have three Arguments, so you will need to run through a-f.

three times. For the first run, start with a bias factor of -0.5 and do a-f. for the

first two Arguments. Repeat this with a bias factor (third Argument) of 0.0. Then

run it through a third time with a bias factor of +0.5.

This exercise may seem tedious, but I urge you to get a notepad and pencil and

try it. Taking this systematic approach very quickly reveals the behavior of

BNumbers in the wild and will save you time down the road.

How to Use UNumbers

UNumbers are a special version of BNumbers: they're BNumbers that are

squashed into the range 0.0 to +1.0. Here's a table matching BNumbers to their

UNumber equivalent:

A BNumber can be converted to a UNumber with the Operator

BNumber2UNumber; a UNumber can be converted to a BNumber with the

Operator UNumber2BNumber.

UNumbers have a variety of uses. For instance, they can be applied to situations

in which you want a percentage scale of something. For example, suppose you

want an Actor to spend some portion of his wealth on something. You can't use a

BNumber to represent the percentage—after all, what does "-0.5 of your wealth"

BNumbers, UNumbers, and Numbers http://storytron.pbwiki.com/BNumbers%2C-UNumbers%2C-a...

2 of 6 3/13/09 8:38 AM

mean? So you convert the BNumber -0.5 to the UNumber +0.25 and now you can

calculate with "25% of your wealth."

There's a simple rule of thumb for when to use BNumbers and UNumbers. If

you're going to use BProduct, then you must use at least one UNumber. Using two

BNumbers in BProduct will probably yield results that you don't want.

Exercise 2: Using UNumbers as Mediators

One common and extremely useful application of UNumbers is as a mediator of an

effect. In the prior tutorial on Quantifiers, recall that we based Fred's inclination

to apologize to Mary on how much he liked her—that is, his pNasty_Nice of her.

But suppose we wanted to mediate his reaction to her with how angry he is

because of the fight?

In other words, the angrier Fred is, the more likely it is that he will react

negatively to being scolded. So the new Inclination script for apologize would then

look like this:

your first category: scold: scoldee: apologize

Inclination

 BProduct of:

 pNasty_Nice of:

 ReactingActor

 ThisSubject

 BNumber2UNumber of:

 Cool_Volatile of:

 ReactingActor

Create this script and then test it in Scriptalyzer. First set an average Cool_Volatile

for Fred (i.e., 0.0), using the Scriptalyzer slider. Now input a range of different

pNasty_Nices, first low, then medium, then high.

Next, set a very high value of Fred's Cool_Volatile (say, 0.8), and then see what

you get as a result with a low, medium, and high pNasty_Nice value.

Third, set a very low value (-0.8). Run through low, medium, and high values for

Cool_Volatile.

What kind of results did you get for Fred's inclination to apologize when he was

level-headed, versus when he was a hot-head?

Do you see how when Fred's Cool_Volatile is very low, his inclination to apologize

to Mary does not change very much in either direction, no matter how much he

likes or dislikes her? On the other hand, if he is a very sensitive soul who reacts

strongly to emotionally charged events (i.e., his Cool_Volatile trait is very high),

BNumbers, UNumbers, and Numbers http://storytron.pbwiki.com/BNumbers%2C-UNumbers%2C-a...

3 of 6 3/13/09 8:38 AM

his decision on whether to apologize to Mary or not will swing widely, depending

on how much he likes her.

This usage of UNumbers we call mediation. Whenever you want to mediate an

Actor's response based on a particular Attribute (that is, if you envision that some

of your characters will have a strong response to an Event, whereas others will

have a weaker response, due to a difference in their personalities, for instance),

convert the Attribute to a UNumber, and multiply it by the primary BNumber

factor. In the example above, the primary factor is pNasty_Nice of ReactingActor

for ThisSubject, and the mediating factor is Nasty_NiceWeight of ReactingActor.

How to Use Numbers

We also use plain old everyday Numbers. You can convert a Number to a

BNumber with the Operator Number2BNumber, and the other way with

BNumber2Number. Here's another table showing the relationship between

Numbers and BNumbers:

BNumbers and UNumbers are the same color, but regular Numbers are a slightly

different color. That's because you can't use Numbers in the same places that you

would use BNumbers, or vice versa. If you want to mix them, you have to use the

conversion Operator, Number2BNumber. Here is an example:

BNumbers, UNumbers, and Numbers http://storytron.pbwiki.com/BNumbers%2C-UNumbers%2C-a...

4 of 6 3/13/09 8:38 AM

BSum of:

 Ugly_Attractive of:

 ReactingActor

 Number2BNumber of:

 4.0

Numbers include such things as tallies of how many Actors have performed a

given Verb, for instance; counts of different sorts; or averages or totals of

Attributes. You might use a Number in a script, such as CountEvents, to

determine how many times ReactingActor has chosen a particular action to slowly

decrease the Actor's likelihood of taking that action again. (This gives your Actors

more varied sets of behavior over time.)

For instance, in the testing storyworld we created in the first set of tutorials, if

you wanted your non-human Actor Tom to get tired of hitting and punching, and

eventually go off and do something else, you could create a script that looks

something like this:

your first category: punch: punchee: punch: Inclination:

BDifference of:

 Fear_Anger of:

 ReactingActor

 Number2BNumber of:

 CountEvents of:

 MainClauseIs

 ReactingActor

 punch

 ThisSubject

You would do the same thing for your first category: punch: punchee: hit with:

Inclination, as well as both Options under your first category: hit with: hittee.

Adding this clause enables Actors to grow bored of repeating the same behavior

and try new things. (If you want Fred to grow bored more slowly, simply add a

quotient:

BDifference of:

 Fear_Anger of:

 ReactingActor

 Number2BNumber of:

 quotient of:

 CountEvents of:

 MainClauseIs

 ReactingActor

BNumbers, UNumbers, and Numbers http://storytron.pbwiki.com/BNumbers%2C-UNumbers%2C-a...

5 of 6 3/13/09 8:38 AM

 punch

 ThisSubject

 10.0

You get similar basic arithmetic Operators for regular Numbers that you get for

BNumbers: Sum, Difference, Product, AbsVal, Inverse, and so forth. See the

Downloads page for details.

PostScript: Crunching the (B-, U-, and Q-) Numbers

For the uber-geeks among us who need to work the numbers themselves to see

how they work, the Downloads page contains a downloadable Operator file with

the equations for:

Converting a Number to a BNumber and vice versa;

Converting a BNumber to a UNumber and vice versa;

The primary BNumber Operators: BSum, and BDifference; and

Converting BNumbers and UNumbers to a Quantifier and vice versa.

Next Tutorial: All You Need Is Blend (part 1)

Previous Tutorial: Quantifiers

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

BNumbers, UNumbers, and Numbers http://storytron.pbwiki.com/BNumbers%2C-UNumbers%2C-a...

6 of 6 3/13/09 8:38 AM

Storytron: All You Need Is Blend (part 1)
Last edited by Bill Maya 6 days ago

In Special Operators we talked a little about Blend and the kinds of things it lets

you do. The Blend Operator is far and away the most useful tool for calculations

with BNumbers. With this one Operator, you can perform just about all of the

common calculations we find in Scripts.

Averaging Two BNumbers (with or without a Bias)

Blend's most frequent use is to take two values and find a value between them, or

in other words, to average them. It also allows you to put your thumb on the

scale toward one or the other value, by use of the third term, the bias factor. For

instance, let's suppose you have a family drama sequence in which a character, a

ne'er-do-well, gets into trouble and has to go around begging family members for

help. All family members have to decide whether to intervene for him. Let's

further suppose you want each family member to take into account both how

close their kinship is to the begging Actor, as well as how much affection they

have for him.

The script might look like this:

beg for help:beggee: intervene on behalf of: Inclination

Blend of:

 Kinship of:

 ReactingActor

 ThisSubject

 PNasty_Nice of:

 ReactingActor

 ThisSubject

 0.0

In this example, the Actor who has to make a decision whether to intervene is the

ReactingActor and the ne'er-do-well who has just begged for help is ThisSubject.

Notice that this script assumes the degree of Kinship is equally important to the

outcome as the degree of affection ReactingActor has for ThisSubject. But you can

also use the bias factor to change the balance. Let's walk through some

examples.

(1) In the example above, if Kinship is +0.5 (ReactingActor and ThisSubject are

cousins) but PNasty_Nice is -0.5 (ReactingActor actively dislikes ThisSubject), you

get this:

Blend of:

 +0.5

 -0.5

All You Need Is Blend (part 1) http://storytron.pbwiki.com/All-You-Need-Is-Blend-(part-1)?m...

1 of 3 3/13/09 8:39 AM

 0.0

This yields a result of 0.0—the average of +0.5 and -0.5. In this scenario,

ReactingActor might intervene for ThisSubject. But don't bet your life savings on

it; there's only a 50/50 chance that it'll happen, all other things being equal. This

is what you get when you place equal importance on Kinship and PNasty_Nice.

(2) You can also do weighted averages, which give greater weight to one of the

Blend factors. Let's try making the degree of Kinship a little more important than

PNasty_Nice. In this case, as above, ReactingActor and ThisSubject are still

cousins (Kinship is +0.5), and ReactingActor still dislikes ThisSubject

(PNasty_Nice is -0.5), but we change the bias factor to +0.2—that is, we put our

thumb on the scales and tip the result toward the first term, Kinship.

Blend of:

 +0.5

 -0.5

 +0.2

(The +0.2 means we are biasing toward the first term, Kinship. If we used a -0.2,

we'd be biasing toward the second term, PNasty_Nice.)

This yields a result of +0.1, because the bias factor of +0.2 gives slightly greater

weight to the +0.5. ReactingActor is a bit more likely to help his irritating cousin

out.

(3) What if we want to make ReactingActor's PNasty_Nice for ThisSubject more

important than than Kinship?

Blend of:

 +0.5

 -0.5

 -0.6

A -0.6 biases the result strongly toward the second term, PNasty_Nice. This yields

a result of -0.3. In this case, ReactingActor is quite a bit less likely to help out his

or her irritating cousin than in either of the prior two examples.

If you play around with the Blend operator in Scryptalyzer you can see this

principle at work.

Next Tutorial: All You Need Is Blend (part 2)

Previous Tutorial: BNumbers, UNumbers, and Numbers

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-

All You Need Is Blend (part 1) http://storytron.pbwiki.com/All-You-Need-Is-Blend-(part-1)?m...

2 of 3 3/13/09 8:39 AM

Noncommercial-Share Alike 3.0 United States License.

All You Need Is Blend (part 1) http://storytron.pbwiki.com/All-You-Need-Is-Blend-(part-1)?m...

3 of 3 3/13/09 8:39 AM

Storytron: All You Need Is Blend (part 2)
Last edited by Bill Maya 6 days ago

Pushing Away from, Pulling Toward—Blending with the Center and the

Ends

It turns out Blend can be used to do a lot of different kinds of things besides

averaging two values with a bias. To understand these uses takes a little

explanation first.

Blend works like this:

Blend of:

 A (FromValue?)

 B (ToValue?)

 C (HowFar?)

What's really happening when you use Blend is that you start with the first value,

A, and move toward B. How far you move from A to B to get your answer is

proportional to the value of C. (A, B, and C are all BNumbers, and thus can range

from nearly -1 to nearly +1).

This is exactly what we did in the examples above. We started with Kinship

between ReactingActor and ThisSubject, and moved in the direction of

ReactingActor's PNasty_Nice toward ThisSubject. How far we moved in the

direction of PNasty_Nice depended on the value of the bias factor, C. So a more

general way of describing what Blend does is to say, "Start at A and head toward

B, in proportion to C."

We've already talked about how to use this for two Attributes that you want to

average, by assigning your two different factors to A and B, and the bias as C, but

Blend has some other interesting uses, as well.

Blending from Minimum to a Value

The trick lies in thinking about Blend in terms of a number line:

Imagine that x and y represent BNumbers that you want to mess with. Here's the

trick: the three numbers -1, 0, and +1 are also values that can be used with

Blend. (Actually, this is not technically true. In BNumber arithmetic, the values

-1.0000 and +1.0000 are not allowed. Instead, you have to use -0.9999 or

+0.9999. To make this easier, we have created created two special constants,

Maxi and Mini, that you can find in the Arithmetic menu, that represent these two

All You Need Is Blend (part 2) http://storytron.pbwiki.com/All-You-Need-Is-Blend-(part-2)?m...

1 of 8 3/13/09 8:39 AM

extremes.)

Consider, for example, this use of Blend:

Blend of:

 Mini

 x

 y

Here's how to visualize it:

The main number line is shown in black. The blue line marks the range inside

which the Blend result must fall, because Blend always produces a number

between its first argument and the its second argument (between Mini and x, in

this example). Now think of the blue line as the number line that y sits on. We

have drawn an image in red of y's numberline superposed over the blue line. (In

effect, we have taken the full black number line and squeezed it down to fit it over

the blue line.) Now y marks the result given by Blend. To express the idea

verbally: Blend pushes x towards Mini in proportion to y.

Just for fun (yeah, right: math is fun...), let's reverse it, like so:

Blend of:

 Mini

 y

 x

Can you guess what the result will be? Here's the visualization:

All You Need Is Blend (part 2) http://storytron.pbwiki.com/All-You-Need-Is-Blend-(part-2)?m...

2 of 8 3/13/09 8:39 AM

In this case, Blend pushes y towards Mini in proportion to x.

An example of how you might use this construction of Blend is if you wanted

something to be very unlikely to happen except under certain conditions. Suppose

you are doing a psychological drama in which a troubled soul has to resist

listening to his inner demons and taking revenge on someone who insulted him.

An Inclination script for the Optionplot revenge might look like this:

plot revenge: Inclination:

 Blend of:

 Mini

 Sane_Psychotic of:

 ReactingActor

 Fearful_Angry of:

 ReactingActor

This script pushes ReactingActor's Inclination to plot revenge toward the minimum

value, starting at their Sane_Psychotic value, in proportion to their level of fear or

anger. That is, the highest possible value you will get is the value of

ReactingActor's level of insanity, if they are in a state of unbridled outrage. Here

are two different scenarios.

With this script, a very sane person (say, with a Sane_Psychotic ActorTrait of

-0.25 or less) would be very unlikely to plot revenge no matter how angry

they are. For instance, a Fearful_Angry mood of +0.8 would result in an

Inclination of -0.32—a pretty low number.

1.

On the other hand, if Jack the Ripper, with a Sane_Psychotic value of +0.9,

got that angry, his Inclination to plot revenge would be highly likely (an

Inclination of 0.71). I wouldn't want to hang around such a person!

2.

To test this, go to the Actor Editor and create a new Actor Core Trait called

"Sane_Psychotic." Then go to the Verb Editor and create an Inclination script with

the following construction:

Blend of:

 Mini

 Sane_Psychotic of:

 ReactingActor

 Fearful_Angry of:

 ReactingActor

Now click on Script > Scriptalyzer on the upper right of the scripting pane. Drag

the slider for "Mini" to the lowest possible point on its slider. Create the Jack the

All You Need Is Blend (part 2) http://storytron.pbwiki.com/All-You-Need-Is-Blend-(part-2)?m...

3 of 8 3/13/09 8:39 AM

Ripper example provided in Scenario (2) above, with +0.90 for Sane_Psychotic of

ReactingActor, and +0.80 for his Fearful_Angry mood. Do you get the same

answer? (Remember, the final result of the script calculation always shows up in

red on the top number line.)

Here is what it should look like if you do the example above, with an angry Jack

the Ripper:

Then try out other values for Sane_Psychotic and Fearful_Angry, and see if the

results you get are what you would expect them to be. Envision a character and

choose a Sane_Psychotic value appropriate for his or her personality. Then set the

second term to that value, and see what kind of Inclination you would get if they

were neither fearful nor angry (which would correspond to a BNumber of 0.0,

right in the middle of the scale.

Next, try changing their mood by moving the third slider bar into the negative

(thus making them more fearful) or positive (making them more angry), and

watch what happens to their Inclination.

Blending from Maximum to a Value

OK, now let's try something else. What if we use Maxi in place of Mini in the

above example:

Blend of:

 Maxi

 y

 x

Here's the visualization:

All You Need Is Blend (part 2) http://storytron.pbwiki.com/All-You-Need-Is-Blend-(part-2)?m...

4 of 8 3/13/09 8:39 AM

Or, to express it verbally, Blend starts at Maxi and moves towards x in proportion

to y.

You would use this construction if you want to stack the deck in favor of making

something likely to happen, but you want to mediate it with key personality,

relationship, or other Attributes that might make a difference in rare cases. For

instance, suppose you are creating a mystery storyworld and an Actor has to

decide whether to deceive the Protagonist (ThisSubject).

Let's assume ReactingActor, on the basis of turnabout is fair play, bases their

decision on how deceitful ThisSubject appears to be (note that this would be the

inverse of PFalse_Honest), mediated by their confidence in ThisSubject's

perceived level of honesty.

Let's make it so that the ReactingActor is predisposed toward deceiving the

detective (perhaps they are protecting a lover or family member, and don't trust

the detective to play fair). They base their decision how deceitful ThisSubject

appears to be (note that this would be the inverse of PFalse_Honest), mediated by

their confidence in their assessment of ThisSubject's deceitfulness.

decide to deceive:Inclination

 Blend of:

 Maxi

 BInverse of:

 PFalse_Honest of:

 ReactingActor

 ThisSubject

 CFalse_Honest of:

 ReactingActor

 ThisSubject

The script is saying this: if ReactingActor trusts ThisSubject a lot, and has a high

degree of confidence in that assessment, ReactingActor will be unlikely to deceive

ThisSubject. For instance, if ReactingActor perceives ThisSubject's honesty as a

strong 0.4, and a very high degree of confidence in that assessment, say a

CFalse_Honest of 0.8, their likelihood to deceive ThisSubject is pretty low: -0.25.

Otherwise, ReactingActor is very likely to deceive ThisSubject.

As with the Jack-The-Ripper Mini-Blend example above, start with a Blend script

that looks like this:

Blend of:

 Maxi

 BInverse of:

All You Need Is Blend (part 2) http://storytron.pbwiki.com/All-You-Need-Is-Blend-(part-2)?m...

5 of 8 3/13/09 8:39 AM

 PFalse_Honest of:

 ReactingActor

 ThisSubject

 CFalse_Honest of

 ReactingActor

 ThisSubject

Set the first slider to the maximum possible amount, and move the second and

third sliders in accordance with an Actor's perception of another's deceptiveness,

and their confidence in that evaluation, and see if you get the final result you

expect for in Inclination. Does the Inclination to deceive go up and down as you

would expect it?

Blending Between A Value and Zero

Now let's try another variation:

Blend of:

 0.0

 x

 y

Blend starts at 0.0and moves toward x in proportion to y.

The simple rule is this:

 Blend starts with the first argument and moves toward the second

argument in

 proportion to the third argument.

Blending Between Two Values, Using Zero

Here's a variation on Blend that is used in BoP2K: We have a country evaluating

a deal. it has to evaluate two factors: the value of what it's getting, and the value

of what it's giving. The value of what it's getting depends on two factors: how

much it desires that outcome (PUndesirable_Desirable), and the likelihood that it

All You Need Is Blend (part 2) http://storytron.pbwiki.com/All-You-Need-Is-Blend-(part-2)?m...

6 of 8 3/13/09 8:39 AM

will happen (PInfluence). So the Script looks like this:

Blend of:

 PUndesirable_Desirable of:

 ReactingActor

 This5Prop

 0.0

 PInfluence of:

 ThisSubject

 Owner of:

 This5Prop

There are three arguments to the Blend Operator. The first argument represents

how much the ReactingActor desires This5Prop. However, the deal doesn't actually

deliver This5Prop—it means only that ThisSubject will attempt to induce the

Owner of This5Prop to deliver it. So we must take into account the likelihood that

ThisSubject will succeed in his attempt. That depends upon how much influence

that ThisSubject has over the Owner of This5Prop.

Now, if ReactingActor were 100% certain that he'd get This5Prop, then the net

desirability would be the desirability of This5Prop—but in fact the chances of

getting This5Prop are less than 100%, so the net desirability is less than the

actual desirability of This5Prop. How much less? That depends on the probability

of success. If the probability of success is zero, then the net desirability is

zero—ReactingActor won't get anything out of the deal. So we

BlendPUndesirable_Desirable with 0.0, and the BlendingRatio will be the likelihood

of success (PInfluence).

Remember, Blend starts with the first argument, and moves from the second

argument towards it, in proportion to the third argument. Hence, the result will

move from PUndesirable_Desirable toward 0.0 in proportion to PInfluence.

Next Tutorial: Engine Operation Overview

Previous Tutorial: All You Need Is Blend (part 1)

All You Need Is Blend (part 2) http://storytron.pbwiki.com/All-You-Need-Is-Blend-(part-2)?m...

7 of 8 3/13/09 8:39 AM

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

All You Need Is Blend (part 2) http://storytron.pbwiki.com/All-You-Need-Is-Blend-(part-2)?m...

8 of 8 3/13/09 8:39 AM

Storytron: Engine Operation Overview
Last edited by Bill Maya 6 days ago

This series of flow charts depicts, in deepening levels of detail, the processing

decisions made by the Story Engine in running the storyworld. First is the main

engine loop:

The Story Engine processes all Actors' actions and travel:

Engine Operation Overview http://storytron.pbwiki.com/Engine-Operation-Overview?mode...

1 of 7 3/13/09 8:39 AM

For each Actor, the Story Engine makes a cascading set of decisions and processes

his or her Plan(s):

Engine Operation Overview http://storytron.pbwiki.com/Engine-Operation-Overview?mode...

2 of 7 3/13/09 8:39 AM

To execute a Plan entails the following series of steps:

Engine Operation Overview http://storytron.pbwiki.com/Engine-Operation-Overview?mode...

3 of 7 3/13/09 8:39 AM

The Actor's Reaction involves a set of decisions and calculations, as follows:

Engine Operation Overview http://storytron.pbwiki.com/Engine-Operation-Overview?mode...

4 of 7 3/13/09 8:39 AM

The Story Engine performs the following steps for each Option under consideration

by a ReactingActor:

Engine Operation Overview http://storytron.pbwiki.com/Engine-Operation-Overview?mode...

5 of 7 3/13/09 8:39 AM

And that's all there is to it! All right, that's a fib...believe it or not, this is a

simplified version of what happens. But it gives you the big picture of what the

Engine does, in what order, to make things happen in your storyworld.

The next tutorial contains this process in written form with some more detail,

including Actor travel.

Downloadable versions of these flowcharts can be found in Downloads section.

Engine Operation Overview http://storytron.pbwiki.com/Engine-Operation-Overview?mode...

6 of 7 3/13/09 8:39 AM

Next Tutorial: Engine Operation Detail

Previous Tutorial: All You Need Is Blend (part 2)

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Engine Operation Overview http://storytron.pbwiki.com/Engine-Operation-Overview?mode...

7 of 7 3/13/09 8:39 AM

Storytron: Engine Operation Detail
Last edited by Bill Maya 6 days ago

The Engine runs on a cycle. What actually happens can be very complicated, but

here is a more thorough (though still simplified) explanation of the process that

the Engine uses.

Top of Cycle:

 Advance the clock by one Moment.

 Set the clock Hours and Days

 Check to see if nothing has happened for at least 10 Moments;

 if so, terminate the story.

Check the clock time; if it's time to do so, trigger the ClockAlarm.

 For each and every Actor, starting with Fate, do the following: (LOOP)

 Relax the Actor's moods (let them relapse towards normalcy)

 For each and every one of the Actor's Plans, do the following: (LOOP)

Check that the Plan's Execution Time has elapsed.

Check that the Actor is on the same Stage as the Plan's DirObject;

 if not, skip this Plan.

 Check the Audience requirement for the Plan's Verb;

 if the Audience requirement is satisfied by the situation,

then proceed;

 otherwise, skip this Plan.

 Check for an Abort Script for this Verb; if there is one, execute it;

 if it returns "true," then abort executing this Plan and

throw it away.

 If we've gotten this far without skipping this Plan, then execute

it:

 store the Plan into the HistoryBook as an Event.

 execute any Consequence Scripts for this Event

 if this Verb is "depart for," do some special things to remove

the Subject

 from his current Stage.

 if this Verb is "arrive at," do some special things to place

the Subject at his

 destination.

 Have Fate react to the Event.

 based on the Audience requirement for the Verb, decide

who on the Stage

 actually witnesses the Event.

 Have each witness in turn react to the Event.

 Have the DirObject react to the Event

 Have the Subject react to the Event.

Engine Operation Detail http://storytron.pbwiki.com/Engine-Operation-Detail?mode=print

1 of 2 3/13/09 8:40 AM

 Throw away the Plan.

 Do not execute any more Plans for this Actor (unless the Actor is

Fate).

 End of Plans loop

 Did the Actor execute any Plans? If so, then proceed to the next Actor. If

not, do this:

 Consider whether to go to another Stage:

 Does the Actor have a previously defined TargetStage? If so, go

there.

 If not, sort through the Plans and find the most important Plan.

 If there is one, go to the Stage where the planned DirObject is

 (so we can execute the Plan on the DirObject).

 If the Subject can't do that, then pick a new Stage to go to based

on:

 how long the Actor has been sitting around at the current

location.

 how Unwelcoming_Homey another Stage is for this Actor

 End of Actor loop

End of main loop—go back to the top of the loop

If it's time to terminate the story, set a Plan for Fate to execute "Fatepenultimate

verbProtagonist." This system Verb will then lead to the very last Event,

"Fatehappily ever after Protagonisthow much." You, the author, may insert

intervening Verbs between penultimate verb and happily ever after; however, if

you do so, see the cautionary notes in System Verbs

You may also write WordSocket scripts for the Quantifier in the very last sentence,

"Fatehappily ever after You this much: [Quantifier]," to reflect how well or poorly

your player did. If you wish, however, you can just leave this at its default setting

of "medium," or you can remove the Quantifier. To remove the happily ever after

Quantifier, go to System Verbs: happily ever after: Properties and eliminate

4Quantifier from the list of WordSockets.

Next Tutorial: Deikto

Previous Tutorial: Engine Operation Overview

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Engine Operation Detail http://storytron.pbwiki.com/Engine-Operation-Detail?mode=print

2 of 2 3/13/09 8:40 AM

Storytron: Deikto
Last edited by Bill Maya 6 days ago

Interactive storytelling is controlled by the language of interaction. The basic rules

of interaction are these:

If you can't say it or hear it, you can't interact.
You can't say much with the devices we use for computer input (mouse, keyboard, etc.).
The obvious solution is language, but real language can't be done on a computer.
It's impossible because of the Sapir-Whorf hypothesis: our language mirrors the reality in which
we live.
Reality is too big to fit inside a computer.

Ergo, we can't fit natural language (which mirrors reality) into the computer.

The solution is to create a toy language to go along with the toy reality of

interactive storytelling.

Usually we define the toy reality, then try to make a language to fit it. That never

works, because language is itself very complicated. The Deikto solution is to

make the language and the reality one and the same. Define the reality by

defining the words of the language in terms of what they do.

Deikto (DEEK-toh) is a system for generating toy languages. It provides the

grammar, the authors provides the words that plug into that grammar. Deikto

appears in Storyteller, the software you used to play a storyworld. This is an

example of a Deikto sentence:

Deikto is displayed to the player in Storyteller, the storyworld playing software.

Each Deikto word has a form the author has to fill out to define it. The form

depends on the type of word (Actor, Stage, Prop, etc). You will find these forms in

SWAT, (StoryWorld Authoring Tool), the software you use to create a storyworld.

Next Tutorial: Sappho

Previous Tutorial: Engine Operation Detail

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Deikto http://storytron.pbwiki.com/Deikto?mode=print

1 of 1 3/13/09 8:40 AM

Storytron: Sappho
Last edited by Bill Maya 6 days ago

Sappho (SAF-foh) is the scripting language for Storytronics. It is the language you

use in SWAT to fill out the forms for the Deikto words that the player sees. It's a

very strange—and very powerful—scripting language, which is designed for

writers and other storytelling professionals. It has many special features:

Syntax errors (saying something that confuses the language) are

impossible.

Initialization errors (forgetting to set things up properly) are impossible.

Point-and-click editing (no typos to cause big trouble)

Argument prompts (when you need to fill in a blank, it tells you)

Scripting is organized in a tree structure (easier on the eyes)

Only legal Operators are made available at any given moment

Color-coded strong data typing:

Bright Red Bounded or Unipolar Number

Dark Red Regular Number

Blue Actor

Green Verb

Black Boolean

Magenta Prop

Orange Stage

Cyan Event

Blue-Green Trait

Purple Quantifier

Gray Comment

This means that you can't accidently mix apples and oranges (or Props and

Actors) because it won't let you put a Prop into a slot meant for an Actor, or vice

versa. And the colors make it easy to tell the apples from the oranges.

There are about 600 Operators available—most are simple. There is no "flow

control" (branching, looping, or subroutines) as is common in most programming

languages. (But there are implicit looping Operators.) Run-time errors generate

Poison —a system that protects you from minor scripting mistakes.

This is an example of a Sappho script:

Sappho http://storytron.pbwiki.com/Sappho?mode=print

1 of 2 3/13/09 8:41 AM

Next Tutorial: Boxes

Previous Tutorial: Deikto

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Sappho http://storytron.pbwiki.com/Sappho?mode=print

2 of 2 3/13/09 8:41 AM

Storytron: Boxes
Last edited by Bill Maya 6 days ago

These are temporary places to store intermediate values; they save you time and

tedium. There are three kinds of boxes:

Verb boxes

Role boxes

Global boxes

Boxes hold onto a particular item for you within a given scope. (For instance, a

VerbActorBox will hold onto a specific Actor designation for use throughout the

Verb's scripts. A RoleEventBox will hold onto a particular Event for use throughout

that Role.) Boxes are useful when you have a fairly hairy script, or a script that

involves HistoryBook lookups—e.g., PastActor of an Event with a bunch of

different parameters, which you want to use multiple times.

There are Boxes for each of the major data types: Actors, Props, Stages, Events,

and Verbs, as well as one BNumber box.

There are also four Global Box sets, again with one Box for each of the listed data

types. These Boxes never forget the values you put into them; if you store

something into a Box during one calculation, you can come back to it much later

in a completely different calculation and it will still have that value in it.

Here is an example for how to use Boxes. It is not uncommon to use the same

script for an Inclination and the Desirable script for a key WordSocket. Suppose

you have a character who might want to run a con, and must choose both whom

to run it on, and how likely he is to run the con, based on how gullible the

intended target is. In a case like this, you can use a single script to both select a

desired DirObject for the scam, and to determine how likely the ReactingActor is

to run the con on that DirObject.

These two uses are confined to a single Role—conman—so the appropriate Box to

use would be a RoleBox. In fact, in this example, you need two Roleboxes: one to

pick the proposed DirObject, and another to give the BNumber corresponding to

ReactingActor's perception of the DirObject's gullibility.

Before you can use a Box in your scripts, you must first fill it. You do this either in

Consequences (for a VerbBox) or Emotional Reactions (for a RoleBox). Once it is

filled, it becomes available throughout the rest of that Verb or Role, respectively.

In our example, the FillRoleActorBox script will look like this:

PickBestActor:

Boxes http://storytron.pbwiki.com/Boxes?mode=print

1 of 3 3/13/09 8:41 AM

 true

 BInverse of:

 pGullible_Skeptical of:

 ReactingActor

 CandidateActor

This picks the Actor who the conman believes is the most gullible (note that to get

the most gullible Actor, we needed to invert the Attribute).

Next you would choose FillRoleBNumberBox. The script would look like this:

pGullible_Skeptical of:

 ReactingActor

 RoleActorBox

This fills the Box with a BNumber corresponding to the conman's perception of his

chosen target's gullibility.

Now you can use the following script for the Inclination to run the con:

RoleBNumberBox

For the DirObject Acceptable WordSocket, you would use:

AreSameActor:

 CandidateActor

 RoleActorBox

Ta-da! No muss, no fuss.

Where Boxes really save you time and effort is when you have a script that

involves numerous Attributes, Lookups, and PickBests, which you use multiple

times within a given Role or Verb. If you intend use a script more than once, use

Boxes.

Here's how you know when to use a VerbBox versus a RoleBox. If the item you

want to use in multiple places is confined to a single Role, you must use a Role

box. If you intend to use that Box throughout the Verb, use a VerbBox.

Global Boxes work in a similar way to VerbBoxes and RoleBoxes, but they apply to

the storyworld as a whole. Be forewarned: it is all too easy to get into trouble

using Global Boxes. We strongly urge that, if you want to use any Global Boxes,

you decide at the very beginning exactly what that Global Box will hold and never,

ever change that in mid-stream. Otherwise, you'll get confused about the

meaning of the Global Box and create monster headaches for yourself.

Boxes http://storytron.pbwiki.com/Boxes?mode=print

2 of 3 3/13/09 8:41 AM

Previous Tutorial: Sappho

 This tutorial by Storytron, Inc. is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

Boxes http://storytron.pbwiki.com/Boxes?mode=print

3 of 3 3/13/09 8:41 AM

